深度学习DAY3:神经网络训练常见算法概述

梯度下降法(Gradient Descent):

这是最常见的神经网络训练方法之一。它通过计算损失函数对权重的梯度,并沿着梯度的反方向更新权重,从而逐步减小损失函数的值。梯度下降有多个变种,包括随机梯度下降(SGD)和小批量梯度下降。

反向传播算法(Backpropagation):

反向传播是一种基于链式法则的方法,用于计算神经网络中每个神经元的梯度。这些梯度用于更新权重,以减小损失函数。反向传播通常与梯度下降一起使用。

动量法(Momentum):

动量法是一种改进的梯度下降方法,它引入了动量项,有助于加速收敛并减少震荡。它通过考虑之前梯度的方向来更新权重。

自适应学习率方法:

这些方法自动调整学习率,以便在训练过程中更好地收敛。常见的自适应学习率算法包括Adagrad、RMSprop和Adam。

遗传算法(Genetic Algorithms):

遗传算法是一种进化算法,用于优化神经网络的权重和结构。它通过模拟自然选择和遗传机制来搜索最佳解决方案。

正则化方法:

正则化方法用于防止过拟合,包括L1正则化和L2正则化。它们在损失函数中引入额外的项,以惩罚权重的大小。

Dropout:

Dropout是一种正则化技术,随机地在训练过程中关闭一些神经元,以减少过拟合风险。

卷积神经网络特定方法:

对于卷积神经网络(CNN),还存在一些特定的训练方法,如权重共享和池化。

相关推荐
Pyeako16 分钟前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
月挽清风43 分钟前
代码随想录第七天:
数据结构·c++·算法
小O的算法实验室1 小时前
2026年AEI SCI1区TOP,基于改进 IRRT*-D* 算法的森林火灾救援场景下直升机轨迹规划,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
哥布林学者1 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(四)分层 softmax 和负采样
深度学习·ai
小郭团队1 小时前
2_1_七段式SVPWM (经典算法)算法理论与 MATLAB 实现详解
嵌入式硬件·算法·硬件架构·arm·dsp开发
充值修改昵称2 小时前
数据结构基础:从二叉树到多叉树数据结构进阶
数据结构·python·算法
Deepoch2 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
浅念-2 小时前
C语言小知识——指针(3)
c语言·开发语言·c++·经验分享·笔记·学习·算法
Hcoco_me3 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人
BHXDML3 小时前
第九章:EM 算法
人工智能·算法·机器学习