深度学习DAY3:神经网络训练常见算法概述

梯度下降法(Gradient Descent):

这是最常见的神经网络训练方法之一。它通过计算损失函数对权重的梯度,并沿着梯度的反方向更新权重,从而逐步减小损失函数的值。梯度下降有多个变种,包括随机梯度下降(SGD)和小批量梯度下降。

反向传播算法(Backpropagation):

反向传播是一种基于链式法则的方法,用于计算神经网络中每个神经元的梯度。这些梯度用于更新权重,以减小损失函数。反向传播通常与梯度下降一起使用。

动量法(Momentum):

动量法是一种改进的梯度下降方法,它引入了动量项,有助于加速收敛并减少震荡。它通过考虑之前梯度的方向来更新权重。

自适应学习率方法:

这些方法自动调整学习率,以便在训练过程中更好地收敛。常见的自适应学习率算法包括Adagrad、RMSprop和Adam。

遗传算法(Genetic Algorithms):

遗传算法是一种进化算法,用于优化神经网络的权重和结构。它通过模拟自然选择和遗传机制来搜索最佳解决方案。

正则化方法:

正则化方法用于防止过拟合,包括L1正则化和L2正则化。它们在损失函数中引入额外的项,以惩罚权重的大小。

Dropout:

Dropout是一种正则化技术,随机地在训练过程中关闭一些神经元,以减少过拟合风险。

卷积神经网络特定方法:

对于卷积神经网络(CNN),还存在一些特定的训练方法,如权重共享和池化。

相关推荐
不知名XL15 分钟前
day27 贪心算法 part05
算法·贪心算法
落雨盛夏21 分钟前
26深度学习|李哥1
人工智能·深度学习
Tisfy21 分钟前
LeetCode 3047.求交集区域内的最大正方形面积:2层循环暴力枚举
算法·leetcode·题解·模拟·枚举·几何
2501_9413220328 分钟前
【蚕桑业】【深度学习】基于VFNet的蚕虫智能检测与识别系统实现与应用
人工智能·深度学习
junziruruo1 小时前
t-SNE可视化降维技术(以FMTrack频率感知与多专家融合文章中的内容为例)
人工智能·算法
藦卡机器人1 小时前
自动焊接机器人的核心技术要求与标准
人工智能·算法·机器人
2501_940315262 小时前
【无标题】1.17给定一个数将其转换为任意一个进制数(用栈的方法)
开发语言·c++·算法
栈与堆2 小时前
LeetCode 21 - 合并两个有序链表
java·数据结构·python·算法·leetcode·链表·rust
CCPC不拿奖不改名2 小时前
循环神经网络RNN:整数索引→稠密向量(嵌入层 / Embedding)详解
人工智能·python·rnn·深度学习·神经网络·自然语言处理·embedding
学好statistics和DS2 小时前
感知机的对偶形式是怎么来的
深度学习·神经网络·机器学习