深度学习DAY3:神经网络训练常见算法概述

梯度下降法(Gradient Descent):

这是最常见的神经网络训练方法之一。它通过计算损失函数对权重的梯度,并沿着梯度的反方向更新权重,从而逐步减小损失函数的值。梯度下降有多个变种,包括随机梯度下降(SGD)和小批量梯度下降。

反向传播算法(Backpropagation):

反向传播是一种基于链式法则的方法,用于计算神经网络中每个神经元的梯度。这些梯度用于更新权重,以减小损失函数。反向传播通常与梯度下降一起使用。

动量法(Momentum):

动量法是一种改进的梯度下降方法,它引入了动量项,有助于加速收敛并减少震荡。它通过考虑之前梯度的方向来更新权重。

自适应学习率方法:

这些方法自动调整学习率,以便在训练过程中更好地收敛。常见的自适应学习率算法包括Adagrad、RMSprop和Adam。

遗传算法(Genetic Algorithms):

遗传算法是一种进化算法,用于优化神经网络的权重和结构。它通过模拟自然选择和遗传机制来搜索最佳解决方案。

正则化方法:

正则化方法用于防止过拟合,包括L1正则化和L2正则化。它们在损失函数中引入额外的项,以惩罚权重的大小。

Dropout:

Dropout是一种正则化技术,随机地在训练过程中关闭一些神经元,以减少过拟合风险。

卷积神经网络特定方法:

对于卷积神经网络(CNN),还存在一些特定的训练方法,如权重共享和池化。

相关推荐
JSU_曾是此间年少3 分钟前
数据结构——线性表与链表
数据结构·c++·算法
此生只爱蛋1 小时前
【手撕排序2】快速排序
c语言·c++·算法·排序算法
Chef_Chen1 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
咕咕吖1 小时前
对称二叉树(力扣101)
算法·leetcode·职场和发展
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
九圣残炎2 小时前
【从零开始的LeetCode-算法】1456. 定长子串中元音的最大数目
java·算法·leetcode
lulu_gh_yu2 小时前
数据结构之排序补充
c语言·开发语言·数据结构·c++·学习·算法·排序算法
丫头,冲鸭!!!2 小时前
B树(B-Tree)和B+树(B+ Tree)
笔记·算法
Re.不晚2 小时前
Java入门15——抽象类
java·开发语言·学习·算法·intellij-idea
为什么这亚子3 小时前
九、Go语言快速入门之map
运维·开发语言·后端·算法·云原生·golang·云计算