深度学习DAY3:神经网络训练常见算法概述

梯度下降法(Gradient Descent):

这是最常见的神经网络训练方法之一。它通过计算损失函数对权重的梯度,并沿着梯度的反方向更新权重,从而逐步减小损失函数的值。梯度下降有多个变种,包括随机梯度下降(SGD)和小批量梯度下降。

反向传播算法(Backpropagation):

反向传播是一种基于链式法则的方法,用于计算神经网络中每个神经元的梯度。这些梯度用于更新权重,以减小损失函数。反向传播通常与梯度下降一起使用。

动量法(Momentum):

动量法是一种改进的梯度下降方法,它引入了动量项,有助于加速收敛并减少震荡。它通过考虑之前梯度的方向来更新权重。

自适应学习率方法:

这些方法自动调整学习率,以便在训练过程中更好地收敛。常见的自适应学习率算法包括Adagrad、RMSprop和Adam。

遗传算法(Genetic Algorithms):

遗传算法是一种进化算法,用于优化神经网络的权重和结构。它通过模拟自然选择和遗传机制来搜索最佳解决方案。

正则化方法:

正则化方法用于防止过拟合,包括L1正则化和L2正则化。它们在损失函数中引入额外的项,以惩罚权重的大小。

Dropout:

Dropout是一种正则化技术,随机地在训练过程中关闭一些神经元,以减少过拟合风险。

卷积神经网络特定方法:

对于卷积神经网络(CNN),还存在一些特定的训练方法,如权重共享和池化。

相关推荐
Ayanami_Reii17 分钟前
进阶数学算法-取石子游戏(ZJOI2009)
数学·算法·游戏·动态规划·区间dp·博弈论
一只小小汤圆18 分钟前
已知圆弧的起点、终点、凸度 求圆弧的圆心
算法
丸码33 分钟前
Java HashMap深度解析
算法·哈希算法·散列表
算法与编程之美34 分钟前
Java数组动态扩容
java·开发语言·python·算法
2301_764441331 小时前
三维建筑非法入侵情景推演
python·学习·算法
java1234_小锋1 小时前
基于Python深度学习的车辆车牌识别系统(PyTorch2卷积神经网络CNN+OpenCV4实现)视频教程 - 裁剪和矫正车牌
python·深度学习·cnn·车牌识别
唯道行1 小时前
计算机图形学·19 Shadings in OpenGL
人工智能·算法·计算机视觉·几何学·计算机图形学·opengl
koo3642 小时前
pytorch深度学习笔记1
pytorch·笔记·深度学习
初夏睡觉2 小时前
全排列题解
算法·深度优先·图论
在下赵某人2 小时前
概率数据结构的设计原理与误差分析
数据结构·算法·哈希算法