深度学习DAY3:神经网络训练常见算法概述

梯度下降法(Gradient Descent):

这是最常见的神经网络训练方法之一。它通过计算损失函数对权重的梯度,并沿着梯度的反方向更新权重,从而逐步减小损失函数的值。梯度下降有多个变种,包括随机梯度下降(SGD)和小批量梯度下降。

反向传播算法(Backpropagation):

反向传播是一种基于链式法则的方法,用于计算神经网络中每个神经元的梯度。这些梯度用于更新权重,以减小损失函数。反向传播通常与梯度下降一起使用。

动量法(Momentum):

动量法是一种改进的梯度下降方法,它引入了动量项,有助于加速收敛并减少震荡。它通过考虑之前梯度的方向来更新权重。

自适应学习率方法:

这些方法自动调整学习率,以便在训练过程中更好地收敛。常见的自适应学习率算法包括Adagrad、RMSprop和Adam。

遗传算法(Genetic Algorithms):

遗传算法是一种进化算法,用于优化神经网络的权重和结构。它通过模拟自然选择和遗传机制来搜索最佳解决方案。

正则化方法:

正则化方法用于防止过拟合,包括L1正则化和L2正则化。它们在损失函数中引入额外的项,以惩罚权重的大小。

Dropout:

Dropout是一种正则化技术,随机地在训练过程中关闭一些神经元,以减少过拟合风险。

卷积神经网络特定方法:

对于卷积神经网络(CNN),还存在一些特定的训练方法,如权重共享和池化。

相关推荐
koo364几秒前
pytorch深度学习笔记9
pytorch·笔记·深度学习
拌面jiang1 分钟前
过拟合--Overfitting(#拌面)
人工智能·深度学习·机器学习
MM_MS6 分钟前
Halcon控制语句
java·大数据·前端·数据库·人工智能·算法·视觉检测
mit6.82419 分钟前
山脉二分找中值|子集型回溯
算法
乃瞻衡宇28 分钟前
Agent Skills 完全指南:让你的 AI Agent 拥有超能力
算法
mit6.82432 分钟前
pair<int, TreeNode*> dfs
算法
haiyu_y44 分钟前
Day 58 经典时序模型 2(ARIMA / 季节性 / 残差诊断)
人工智能·深度学习·ar
Stuomasi_xiaoxin1 小时前
ROS2介绍,及ubuntu22.04 安装ROS 2部署使用!
linux·人工智能·深度学习·ubuntu
初晴や1 小时前
【C++】图论:基础理论与实际应用深入解析
c++·算法·图论
李泽辉_1 小时前
深度学习算法学习(五):手动实现梯度计算、反向传播、优化器Adam
深度学习·学习·算法