简单实现接口自动化测试(基于python+unittest)

简介

本文通过从Postman获取基本的接口测试Code简单的接口测试入手,一步步调整优化接口调用,以及增加基本的结果判断,讲解Python自带的Unittest框架调用,期望各位可以通过本文对接口自动化测试有一个大致的了解。

引言

为什么要做接口自动化测试?

在当前互联网产品迭代频繁的背景下,回归测试的时间越来越少,很难在每个迭代都对所有功能做完整回归。但接口自动化测试因其实现简单、维护成本低,容易提高覆盖率等特点,越来越受重视。

为什么要自己写框架呢?

使用Postman调试通过过直接可以获取接口测试的基本代码,结合使用requets + unittest很容易实现接口自动化测试的封装,而且requests的api已经非常人性化,非常简单,但通过封装以后(特别是针对公司内特定接口),可以进一步提高脚本编写效率。

一个现有的简单接口例子

下面使用requests + unittest测试一个查询接口

接口信息如下

请求信息:

Method:POST

URL:api/match/image/getjson

Request:

{
"category": "image",
"offset": "0",
"limit": "30",
"sourceId": "0",
"metaTitle": "",
"metaId": "0",
"classify": "unclassify",
"startTime": "",
"endTime": "",
"createStart": "",
"createEnd": "",
"sourceType": "",
"isTracking": "true",
"metaGroup": "",
"companyId": "0",
"lastDays": "1",
"author": ""
}

Response示例:

{
"timestamp" : xxx,
"errorMsg" : "",
"data" : {
"config" : xxx
}

Postman测试方法见

测试思路

1.获取Postman原始脚本

2.使用requests库模拟发送HTTP请求**

3.对原始脚本进行基础改造**

4.使用python标准库里unittest写测试case**

原始脚本实现

未优化

该代码只是简单的一次调用,而且返回的结果太多,很多返回信息暂时没用,示例代码如下

import requests

url = "http://cpright.xinhua-news.cn/api/match/image/getjson"

querystring = {"category":"image","offset":"0","limit":"30","sourceId":"0","metaTitle":"","metaId":"0","classify":"unclassify","startTime":"","endTime":"","createStart":"","createEnd":"","sourceType":"","isTracking":"true","metaGroup":"","companyId":"0","lastDays":"1","author":""}

headers = {
    'cache-control': "no-cache",
    'postman-token': "e97a99b0-424b-b2a5-7602-22cd50223c15"
    }

response = requests.request("POST", url, headers=headers, params=querystring)

print(response.text)
优化 第一版

调整代码结构,输出结果Json出来,获取需要验证的response.status_code,以及获取结果校验需要用到的results['total']

#!/usr/bin/env python
#coding: utf-8
'''
unittest merchant backgroud interface
@author: zhang_jin
@version: 1.0
@see:http://www.python-requests.org/en/master/
'''

import unittest
import json
import traceback
import requests


url = "http://cpright.xinhua-news.cn/api/match/image/getjson"

querystring = {
    "category": "image",
    "offset": "0",
    "limit": "30",
    "sourceId": "0",
    "metaTitle": "",
    "metaId": "0",
    "classify": "unclassify",
    "startTime": "",
    "endTime": "",
    "createStart": "",
    "createEnd": "",
    "sourceType": "",
    "isTracking": "true",
    "metaGroup": "",
    "companyId": "0",
    "lastDays": "1",
    "author": ""
}

headers = {
    'cache-control': "no-cache",
    'postman-token': "e97a99b0-424b-b2a5-7602-22cd50223c15"
    }

#Post接口调用
response = requests.request("POST", url, headers=headers, params=querystring)

#对返回结果进行转义成json串
results = json.loads(response.text)

#获取http请求的status_code
print "Http code:",response.status_code

#获取结果中的total的值
print results['total']
#print(response.text)
优化 第二版

接口调用异常处理,增加try,except处理,对于返回response.status_code,返回200进行结果比对,不是200数据异常信息。

#!/usr/bin/env python
#coding: utf-8
'''
unittest merchant backgroud interface
@author: zhang_jin
@version: 1.0
@see:http://www.python-requests.org/en/master/
'''

import json
import traceback
import requests


url = "http://cpright.xinhua-news.cn/api/match/image/getjson"

querystring = {
    "category": "image",
    "offset": "0",
    "limit": "30",
    "sourceId": "0",
    "metaTitle": "",
    "metaId": "0",
    "classify": "unclassify",
    "startTime": "",
    "endTime": "",
    "createStart": "",
    "createEnd": "",
    "sourceType": "",
    "isTracking": "true",
    "metaGroup": "",
    "companyId": "0",
    "lastDays": "1",
    "author": ""
}

headers = {
    'cache-control': "no-cache",
    'postman-token': "e97a99b0-424b-b2a5-7602-22cd50223c15"
    }


try:
    #Post接口调用
    response = requests.request("POST", url, headers=headers, params=querystring)

    #对http返回值进行判断,对于200做基本校验
    if response.status_code == 200:
        results = json.loads(response.text)
        if results['total'] == 191:
            print "Success"
        else:
            print "Fail"
            print results['total']
    else:
        #对于http返回非200的code,输出相应的code
        raise Exception("http error info:%s" %response.status_code)
except:
    traceback.print_exc()
优化 第三版

1.该版本改动较大,引入config文件,单独封装结果校验模块,引入unittest模块,实现接口自动调用,并增加log处理模块;
2.对不同Post请求结果进行封装,不同接口分开调用;
3.测试用例的结果进行统计并最终输出

#!/usr/bin/env python
#coding: utf-8
'''
unittest interface
@author: zhang_jin
@version: 1.0
@see:http://www.python-requests.org/en/master/
'''

import unittest
import json
import traceback
import requests
import time
import result_statistics
import config as cf
from com_logger import  match_Logger


class MyTestSuite(unittest.TestCase):
    """docstring for MyTestSuite"""
    #@classmethod
    def sedUp(self):
        print "start..."
    #图片匹配统计
    def test_image_match_001(self):
        url = cf.URL1

        querystring = {
            "category": "image",
            "offset": "0",
            "limit": "30",
          "sourceId": "0",
          "metaTitle": "",
          "metaId": "0",
          "classify": "unclassify",
          "startTime": "",
          "endTime": "",
          "createStart": "",
          "createEnd": "",
          "sourceType": "",
          "isTracking": "true",
          "metaGroup": "",
          "companyId": "0",
          "lastDays": "1",
          "author": ""
        }
        headers = {
            'cache-control': "no-cache",
            'postman-token': "545a2e40-b120-2096-960c-54875be347be"
            }


        response = requests.request("POST", url, headers=headers, params=querystring)
        if response.status_code == 200:
            response.encoding = response.apparent_encoding
            results = json.loads(response.text)
            #预期结果与实际结果校验,调用result_statistics模块
            result_statistics.test_result(results,196)
        else:
            print "http error info:%s" %response.status_code

        #match_Logger.info("start image_query22222")
        #self.assertEqual(results['total'], 888)

        '''
        try:
            self.assertEqual(results['total'], 888)
        except:
            match_Logger.error(traceback.format_exc())
        #print results['total']
        '''

    #文字匹配数据统计
    def test_text_match_001(self):

        text_url = cf.URL2

        querystring = {
            "category": "text",
            "offset": "0",
            "limit": "30",
            "sourceId": "0",
            "metaTitle": "",
            "metaId": "0",
            "startTime": "2017-04-14",
            "endTime": "2017-04-15",
            "createStart": "",
            "createEnd": "",
            "sourceType": "",
            "isTracking": "true",
            "metaGroup": "",
            "companyId": "0",
            "lastDays": "0",
            "author": "",
            "content": ""
        }
        headers = {
            'cache-control': "no-cache",
            'postman-token': "ef3c29d8-1c88-062a-76d9-f2fbebf2536c"
            }

        response = requests.request("POST", text_url, headers=headers, params=querystring)

        if response.status_code == 200:
            response.encoding = response.apparent_encoding
            results = json.loads(response.text)
            #预期结果与实际结果校验,调用result_statistics模块
            result_statistics.test_result(results,190)
        else:
            print "http error info:%s" %response.status_code

        #print(response.text)

    def tearDown(self): 
        pass

if __name__ == '__main__':
    #image_match_Logger = ALogger('image_match', log_level='INFO')

    #构造测试集合
    suite=unittest.TestSuite()
    suite.addTest(MyTestSuite("test_image_match_001"))
    suite.addTest(MyTestSuite("test_text_match_001"))

    #执行测试
    runner = unittest.TextTestRunner()
    runner.run(suite)
    print "success case:",result_statistics.num_success
    print "fail case:",result_statistics.num_fail
    #unittest.main()
最终输出日志信息
Zj-Mac:unittest lazybone$ python image_test_3.py 
测试结果:通过

.测试结果:不通过 
错误信息: 期望返回值:190 实际返回值:4522

.
----------------------------------------------------------------------
Ran 2 tests in 0.889s

OK
success case: 1
fail case: 1

后续改进建议

1.unittest输出报告也可以推荐使用HTMLTestRunner(我目前是对结果统计进行了封装)

2.接口的继续封装,参数化,模块化

3.unittest单元测试框架实现参数化调用第三方模块引用(nose-parameterized)

4.持续集成运行环境、定时任务、触发运行、邮件发送等一系列功能均可以在Jenkins上实现。

相关推荐
fmdpenny26 分钟前
Vue3初学之商品的增,删,改功能
开发语言·javascript·vue.js
通信.萌新33 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
Bran_Liu38 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
涛ing41 分钟前
21. C语言 `typedef`:类型重命名
linux·c语言·开发语言·c++·vscode·算法·visual studio
weixin_3077791341 分钟前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
等一场春雨1 小时前
Java设计模式 十四 行为型模式 (Behavioral Patterns)
java·开发语言·设计模式
黄金小码农1 小时前
C语言二级 2025/1/20 周一
c语言·开发语言·算法
萧若岚1 小时前
Elixir语言的Web开发
开发语言·后端·golang
wave_sky2 小时前
解决使用code命令时的bash: code: command not found问题
开发语言·bash
Channing Lewis2 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask