基于乌燕鸥优化的BP神经网络(分类应用) - 附代码

基于乌燕鸥优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用乌燕鸥算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.乌燕鸥优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 乌燕鸥算法应用

乌燕鸥算法原理请参考:https://blog.csdn.net/u011835903/article/details/111936344

乌燕鸥算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从乌燕鸥算法的收敛曲线可以看到,整体误差是不断下降的,说明乌燕鸥算法起到了优化的作用:



5.Matlab代码

相关推荐
cxr8287 分钟前
AI智能体赋能文化传承与创新领域:社群身份认同的数字空间重构与文化融合策略
大数据·人工智能·重构·提示词工程·ai赋能
常州晟凯电子科技11 分钟前
海思SS626开发笔记之环境搭建和SDK编译
人工智能·笔记·嵌入式硬件·物联网
Apifox.21 分钟前
Apifox 9 月更新| AI 生成接口测试用例、在线文档调试能力全面升级、内置更多 HTTP 状态码、支持将目录转换为模块
前端·人工智能·后端·http·ai·测试用例·postman
武子康25 分钟前
AI-调查研究-95-具身智能 机器人场景测试全解析:从极端环境仿真到自动化故障注入
人工智能·深度学习·机器学习·ai·机器人·自动化·具身智能
Light6028 分钟前
领码方案|微服务与SOA的世纪对话(3):方法论新生——DDD、服务网格与AI Ops的融合之道
运维·人工智能·微服务·ddd·soa·服务网格·ai ops
realhuizhu1 小时前
国庆收心指南:用AI提示词工程解决节后综合征
人工智能·ai·chatgpt·prompt·提示词·deepseek·假期综合征·节后综合征
Dream_言十1 小时前
光通信|可旋转DNN赋能OAM模式可控路由
神经网络·学习·dnn·论文笔记
老兵发新帖1 小时前
归一化分析2
人工智能
yzx9910131 小时前
低空经济新纪元:AI驱动的智能无人机技术与应用
人工智能·无人机
一袋米扛几楼981 小时前
【机器学习】混淆矩阵(confusion matrix)TP TN FP FN
人工智能·机器学习·矩阵