在深度学习中,累计不同批次的损失估计总体损失

在深度学习中,累计不同批次的损失估计总体损失

在深度学习训练模型的过程中,通常会通过计算不同批次间的损失和,当作模型在这个训练集上的总体损失,这种做法是否具有可行性呢?

  • 什么是总体损失 ?
    • 总体损失是计算模型在整个数据集上的损失,但是在训练时,可以计算每个批次上的损失并求和,以此观察模型的训练进度。
  • 训练的作用:前向传播计算损失函数值,为了尽量减少损失函数值,反向传播计算损失函数梯度,并用梯度更新模型参数。通过不断地迭代上面的步骤,让模型收敛到一个局部最优解。
  • 需要注意的是 :同一个批次使用的是相同的模型参数,计算完一个批次之后,模型参数也会相应地更新,所以不同的批次之间使用的模型参数一般不同相同
  • 观察总体损失的意义:监控并指导模型的训练,我们的目标是让总体损失在训练过程中逐渐减小。
  • 所以在同一轮训练中,虽然不同批次之间会由于参数的变化,计算的损失差异可能比较大,而通过训练的目标可以知道,同一轮中越往后的批次,得到的损失理论上应该是越小的。所以累计的不同批次之间的损失当作总体损失,如果总体损失在训练期间不断减小,那么模型正在学习改进
  • 使用每一轮训练好的模型来计算总体损失是否可行?
    • 可行。但是会导致训练非常慢,因为需要在每一轮训练后,计算模型在整个训练集上的损失。
  • 可以使用最后一个批次的损失,来监控模型的训练进度吗?
    • 可以。这个损失通常称为**"当前批次损失"**,但是这个损失不一定能很好地反映整个训练的过程中模型的性能,所以更好的做法是同时监控"当前批次损失"和总体损失。
相关推荐
羞儿6 分钟前
【读点论文】Text Detection Forgot About Document OCR,很实用的一个实验对比案例,将科研成果与商业产品进行碰撞
深度学习·ocr·str·std
deephub32 分钟前
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
人工智能·深度学习·transformer·大语言模型·注意力机制
搏博44 分钟前
神经网络问题之二:梯度爆炸(Gradient Explosion)
人工智能·深度学习·神经网络
KGback1 小时前
【论文解析】HAQ: Hardware-Aware Automated Quantization With Mixed Precision
人工智能
电子手信1 小时前
知识中台在多语言客户中的应用
大数据·人工智能·自然语言处理·数据挖掘·知识图谱
不高明的骗子1 小时前
【深度学习之一】2024最新pytorch+cuda+cudnn下载安装搭建开发环境
人工智能·pytorch·深度学习·cuda
Chef_Chen1 小时前
从0开始学习机器学习--Day33--机器学习阶段总结
人工智能·学习·机器学习
搏博1 小时前
神经网络问题之:梯度不稳定
人工智能·深度学习·神经网络
Sxiaocai1 小时前
使用 PyTorch 实现并训练 VGGNet 用于 MNIST 分类
pytorch·深度学习·分类
GL_Rain1 小时前
【OpenCV】Could NOT find TIFF (missing: TIFF_LIBRARY TIFF_INCLUDE_DIR)
人工智能·opencv·计算机视觉