在深度学习中,累计不同批次的损失估计总体损失

在深度学习中,累计不同批次的损失估计总体损失

在深度学习训练模型的过程中,通常会通过计算不同批次间的损失和,当作模型在这个训练集上的总体损失,这种做法是否具有可行性呢?

  • 什么是总体损失 ?
    • 总体损失是计算模型在整个数据集上的损失,但是在训练时,可以计算每个批次上的损失并求和,以此观察模型的训练进度。
  • 训练的作用:前向传播计算损失函数值,为了尽量减少损失函数值,反向传播计算损失函数梯度,并用梯度更新模型参数。通过不断地迭代上面的步骤,让模型收敛到一个局部最优解。
  • 需要注意的是 :同一个批次使用的是相同的模型参数,计算完一个批次之后,模型参数也会相应地更新,所以不同的批次之间使用的模型参数一般不同相同
  • 观察总体损失的意义:监控并指导模型的训练,我们的目标是让总体损失在训练过程中逐渐减小。
  • 所以在同一轮训练中,虽然不同批次之间会由于参数的变化,计算的损失差异可能比较大,而通过训练的目标可以知道,同一轮中越往后的批次,得到的损失理论上应该是越小的。所以累计的不同批次之间的损失当作总体损失,如果总体损失在训练期间不断减小,那么模型正在学习改进
  • 使用每一轮训练好的模型来计算总体损失是否可行?
    • 可行。但是会导致训练非常慢,因为需要在每一轮训练后,计算模型在整个训练集上的损失。
  • 可以使用最后一个批次的损失,来监控模型的训练进度吗?
    • 可以。这个损失通常称为**"当前批次损失"**,但是这个损失不一定能很好地反映整个训练的过程中模型的性能,所以更好的做法是同时监控"当前批次损失"和总体损失。
相关推荐
GoMaxAi11 分钟前
金融行业 AI 报告自动化:Word+PPT 双引擎生成方案
人工智能·unity·ai作画·金融·自动化·aigc·word
訾博ZiBo27 分钟前
AI日报 - 2025年04月16日
人工智能
蹦蹦跳跳真可爱58935 分钟前
Python----机器学习(基于PyTorch的乳腺癌逻辑回归)
人工智能·pytorch·python·分类·逻辑回归·学习方法
Hali_Botebie1 小时前
【端到端】端到端自动驾驶依赖Occupancy进行运动规划?还是可以具有生成局部地图来规划?
人工智能·机器学习·自动驾驶
88号技师1 小时前
【2024年最新IEEE Trans】模糊斜率熵Fuzzy Slope entropy及5种多尺度,应用于状态识别、故障诊断!
人工智能·算法·matlab·时序分析·故障诊断·信息熵·特征提取
新知图书1 小时前
OpenCV滑动条事件
人工智能·opencv·计算机视觉
清同趣科研1 小时前
R绘图|6种NMDS(非度量多维分析)绘图保姆级模板——NMDS从原理到绘图,看师兄这篇教程就够了
人工智能·算法
凡人的AI工具箱1 小时前
PyTorch深度学习框架60天进阶学习计划 - 第41天:生成对抗网络进阶(三)
人工智能·pytorch·python·深度学习·学习·生成对抗网络
workworkwork勤劳又勇敢1 小时前
Adversarial Attack对抗攻击--李宏毅机器学习笔记
人工智能·笔记·深度学习·机器学习
乌旭2 小时前
从Ampere到Hopper:GPU架构演进对AI模型训练的颠覆性影响
人工智能·pytorch·分布式·深度学习·机器学习·ai·gpu算力