在深度学习中,累计不同批次的损失估计总体损失

在深度学习中,累计不同批次的损失估计总体损失

在深度学习训练模型的过程中,通常会通过计算不同批次间的损失和,当作模型在这个训练集上的总体损失,这种做法是否具有可行性呢?

  • 什么是总体损失 ?
    • 总体损失是计算模型在整个数据集上的损失,但是在训练时,可以计算每个批次上的损失并求和,以此观察模型的训练进度。
  • 训练的作用:前向传播计算损失函数值,为了尽量减少损失函数值,反向传播计算损失函数梯度,并用梯度更新模型参数。通过不断地迭代上面的步骤,让模型收敛到一个局部最优解。
  • 需要注意的是 :同一个批次使用的是相同的模型参数,计算完一个批次之后,模型参数也会相应地更新,所以不同的批次之间使用的模型参数一般不同相同
  • 观察总体损失的意义:监控并指导模型的训练,我们的目标是让总体损失在训练过程中逐渐减小。
  • 所以在同一轮训练中,虽然不同批次之间会由于参数的变化,计算的损失差异可能比较大,而通过训练的目标可以知道,同一轮中越往后的批次,得到的损失理论上应该是越小的。所以累计的不同批次之间的损失当作总体损失,如果总体损失在训练期间不断减小,那么模型正在学习改进
  • 使用每一轮训练好的模型来计算总体损失是否可行?
    • 可行。但是会导致训练非常慢,因为需要在每一轮训练后,计算模型在整个训练集上的损失。
  • 可以使用最后一个批次的损失,来监控模型的训练进度吗?
    • 可以。这个损失通常称为**"当前批次损失"**,但是这个损失不一定能很好地反映整个训练的过程中模型的性能,所以更好的做法是同时监控"当前批次损失"和总体损失。
相关推荐
爱喝白开水a12 分钟前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void19 分钟前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG24 分钟前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
生命是有光的27 分钟前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型31 分钟前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全
科技新知43 分钟前
大厂AI各走“开源”路
人工智能·开源
字节数据平台1 小时前
火山引擎Data Agent再拓新场景,重磅推出用户研究Agent
大数据·人工智能·火山引擎
TGITCIC1 小时前
LLaVA-OV:开源多模态的“可复现”革命,不只是又一个模型
人工智能·开源·多模态·ai大模型·开源大模型·视觉模型·大模型ai
GeeLark1 小时前
GeeLark 9月功能更新回顾
人工智能
mwq301231 小时前
GPT-2 中的 Pre-Layer Normalization (Pre-LN) 架构详解
人工智能