深度学习:UserWarning: The parameter ‘pretrained‘ is deprecated since 0.13..解决办法

深度学习:UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. 解决办法

1 报错警告:

pytorch版本:0.14.1

在利用pytorch中的预训练模型时,如resnet18

import torchvision.models as models
pretrained_model = models.resnet18(pretrained=True)

会提示警告:

UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
  f"The parameter '{pretrained_param}' is deprecated since 0.13 and may be removed in the future, "

看出给出的原因是在0.13版本后,开始使用weights参数。

2 处理方法:

接下来为处理这个问题的方法,不同的预训练模型方法适用 以model.resnet18()为例

  • 首先点击models.resnet18()函数,进入函数内部,可以看到如下内容

    @handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1))
    

    def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
    """ResNet-18 from Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>__.

      Args:
          weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The
              pretrained weights to use. See
              :class:`~torchvision.models.ResNet18_Weights` below for
              more details, and possible values. By default, no pre-trained
              weights are used.
          progress (bool, optional): If True, displays a progress bar of the
              download to stderr. Default is True.
          **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
              base class. Please refer to the `source code
              <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
              for more details about this class.
    
      .. autoclass:: torchvision.models.ResNet18_Weights
          :members:
      """
      weights = ResNet18_Weights.verify(weights)
    
      return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)
    
  • 首先看到第一行weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1),所以这个还是可以用的,相当于利用了ResNet18_Weights.IMAGENET1K_V1参数。然后看第二行的这个weights函数接受的ResNet18_Weights,再次进入内部,可以看到如下:

    class ResNet18_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
    url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
    transforms=partial(ImageClassification, crop_size=224),
    meta={
    **_COMMON_META,
    "num_params": 11689512,
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
    "_metrics": {
    "ImageNet-1K": {
    "acc@1": 69.758,
    "acc@5": 89.078,
    }
    },
    "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
    },
    )
    DEFAULT = IMAGENET1K_V1

这个是选择的参数,其他的预训练模型可以有多个版本,如下面ResNet50_Weights, 可以根据自己需求选择需要的。

  • 上面的函数已经给出了调用方法Args: weights (:class:~torchvision.models.ResNet18_Weights, optional)
    所以直接

    pretrained_model = models.resnet18(models.ResNet18_Weights.IMAGENET1K_V1)

也可以

pretrained_model = models.resnet18(models.ResNet18_Weights.DEFAULT)

这两个是一样的。

3.总结

在版本更新之后可能会有些变化,有些函数调用方式的变化可以直接通过函数内部查看然后修改,重点是修改思路解决相同类似的问题。

相关推荐
@心都几秒前
机器学习数学基础:45.多重响应分析
人工智能·机器学习
进阶的小蜉蝣1 分钟前
[machine learning] DP(Data Parallel) vs DDP(Distributed Data Parallel)
人工智能·机器学习
寻月隐君11 分钟前
Python 数据结构与算法:课程笔记与实战解析
后端·python·github
YuhsiHu16 分钟前
【论文精读】ACE-Zero
人工智能·深度学习·计算机视觉·3d·机器人
声网19 分钟前
Tavus 发布对话轮次控制模型:能理解对话节奏和意图;百度推出 AI 情感陪伴应用月匣,整合 MiniMax 等模型丨日报
人工智能
晴空对晚照21 分钟前
[动手学习深度学习]12.权重衰退
人工智能·深度学习·学习
红队it28 分钟前
【数据分析大屏】基于Django+Vue汽车销售数据分析可视化大屏(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅
python·数据分析·spark·汽车·大屏端
蹦蹦跳跳真可爱58936 分钟前
Python----计算机视觉处理(opencv:图片灰度化)
人工智能·python·opencv·计算机视觉
岛屿旅人39 分钟前
基于生成式人工智能的网络安全主动防御技术(上)
网络·人工智能·安全·web安全·网络安全
A林玖43 分钟前
KNN算法原理及python代码实现
人工智能·机器学习