基于Python简单实现接口自动化测试(详解)

一、简介

本文从一个简单的登录接口测试入手,一步步调整优化接口调用姿势,然后简单讨论了一下接口测试框架的要点,最后介绍了一下我们目前正在使用的接口测试框架pithy。期望读者可以通过本文对接口自动化测试有一个大致的了解。

二、引言

为什么要做接口自动化测试?

在当前互联网产品迭代频繁的背景下,回归测试的时间越来越少,很难在每个迭代都对所有功能做完整回归。但接口自动化测试因其实现简单、维护成本低,容易提高覆盖率等特点,越来越受重视。

为什么要自己写框架呢?

使用requets + unittest很容易实现接口自动化测试,而且requests的api已经非常人性化,非常简单,但通过封装以后(特别是针对公司内特定接口),再加上对一些常用工具的封装,可以进一步提高业务脚本编写效率。

同时,我也准备了一份软件测试视频教程(含接口、自动化、性能等),需要的可以直接在下方观看 ,或者直接关注VX公众号:互联网杂货铺,免费领取

软件测试视频教程观看处:

字节大佬教你逼自己如何在15天内掌握自动化测试(接口自动化/APP自动化/Web自动化/性能测试),内含项目实战

三、环境准备

确保本机已安装python2.7以上版本,然后安装如下库

pip install flask
pip install requests

后面我们会使用flask写一个用来测试的接口,使用requests去测试

四、测试接口准备

下面使用flask实现两个http接口,一个登录,另外一个查询详情,但需要登录后才可以,新建一个demo.py文件(注意,不要使用windows记事本),把下面代码copy进去,然后保存、关闭

接口代码

#!/usr/bin/python
# coding=utf-8
from flask import Flask, request, session, jsonify
 
USERNAME = 'admin'
PASSWORD = '123456'
 
app = Flask(__name__)
app.secret_key = 'pithy'
 
 
@app.route('/login', methods=['GET', 'POST'])
def login():
    error = None
    if request.method == 'POST':
        if request.form['username'] != USERNAME:
            error = 'Invalid username'
        elif request.form['password'] != PASSWORD:
            error = 'Invalid password'
        else:
            session['logged_in'] = True
            return jsonify({'code': 200, 'msg': 'success'})
    return jsonify({'code': 401, 'msg': error}), 401
 
 
@app.route('/info', methods=['get'])
def info():
    if not session.get('logged_in'):
        return jsonify({'code': 401, 'msg': 'please login !!'})
    return jsonify({'code': 200, 'msg': 'success', 'data': 'info'})
 
if __name__ == '__main__':
    app.run(debug=True)

最后执行如下命令

python demo.py

响应如下

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat

大家可以看到服务已经起起来了

接口信息

登录接口

请求url

 /login

请求方法

 post

请求参数

响应信息

详情接口

请求url

/info

请求方法

get

请求cookies

响应信息

五、编写接口测试

测试思路

  • 使用requests [使用链接] 库模拟发送HTTP请求
  • 使用python标准库里unittest写测试case

脚本实现

#!/usr/bin/python
# coding=utf-8
import requests
import unittest
 
 
class TestLogin(unittest.TestCase):
 
    @classmethod
    def setUpClass(cls):
        cls.login_url = 'http://127.0.0.1:5000/login'
        cls.info_url = 'http://127.0.0.1:5000/info'
        cls.username = 'admin'
        cls.password = '123456'
 
    def test_login(self):
        """
        测试登录
        """
        data = {
            'username': self.username,
            'password': self.password
        }
 
        response = requests.post(self.login_url, data=data).json()
 
        assert response['code'] == 200
        assert response['msg'] == 'success'
 
    def test_info(self):
        """
        测试info接口
        """
 
        data = {
            'username': self.username,
            'password': self.password
        }
 
        response_cookies = requests.post(self.login_url, data=data).cookies
        session = response_cookies.get('session')
        assert session
 
        info_cookies = {
            'session': session
        }
 
        response = requests.get(self.info_url, cookies=info_cookies).json()
        assert response['code'] == 200
        assert response['msg'] == 'success'
        assert response['data'] == 'info'

六、优化

封装接口调用

写完这个测试登录脚本,你或许会发现,在整个项目的测试过程,登录可能不止用到一次,如果每次都这么写,会不会太冗余了? 对,确实太冗余了,下面做一下简单的封装,把登录接口的调用封装到一个方法里,把调用参数暴漏出来,示例脚本如下:

#!/usr/bin/python
# coding=utf-8
import requests
import unittest
try:
    from urlparse import urljoin
except ImportError:
    from urllib.parse import urljoin
 
 
class DemoApi(object):
 
    def __init__(self, base_url):
        self.base_url = base_url
 
    def login(self, username, password):
        """
        登录接口
        :param username: 用户名
        :param password: 密码
        """
        url = urljoin(self.base_url, 'login')
        data = {
            'username': username,
            'password': password
        }
 
        return requests.post(url, data=data).json()
 
    def get_cookies(self, username, password):
        """
        获取登录cookies
        """
        url = urljoin(self.base_url, 'login')
        data = {
            'username': username,
            'password': password
        }
 
        return requests.post(url, data=data).cookies
 
    def info(self, cookies):
        """
        详情接口
        """
        url = urljoin(self.base_url, 'info')
        return requests.get(url, cookies=cookies).json()
 
 
class TestLogin(unittest.TestCase):
 
    @classmethod
    def setUpClass(cls):
        cls.base_url = 'http://127.0.0.1:5000'
        cls.username = 'admin'
        cls.password = '123456'
        cls.app = DemoApi(cls.base_url)
 
    def test_login(self):
        """
        测试登录
        """
        response = self.app.login(self.username, self.password)
        assert response['code'] == 200
        assert response['msg'] == 'success'
 
    def test_info(self):
        """
        测试获取详情信息
        """
        cookies = self.app.get_cookies(self.username, self.password)
        response = self.app.info(cookies)
        assert response['code'] == 200
        assert response['msg'] == 'success'
        assert response['data'] == 'info'

OK,在这一个版本中,我们不但在把登录接口的调用封装成了一个实例方法,实现了复用,而且还把host(self.base_url)提取了出来,但问题又来了,登录之后,登录接口的http响应会把session以 cookie的形式set到客户端,之后的接口都会使用此session去请求,还有,就是在接口调用过程中,希望可以把日志打印出来,以便调试或者出错时查看。

好吧,我们再来改一版。

保持cookies&增加log信息

使用requests库里的同一个Session对象(它也会在同一个Session 实例发出的所有请求之间保持 cookie),即可解决上面的问题,示例代码如下:

#!/usr/bin/python
# coding=utf-8
import unittest
from pprint import pprint
from requests.sessions import Session
try:
    from urlparse import urljoin
except ImportError:
    from urllib.parse import urljoin
 
 
class DemoApi(object):
 
    def __init__(self, base_url):
        self.base_url = base_url
        # 创建session实例
        self.session = Session()
 
    def login(self, username, password):
        """
        登录接口
        :param username: 用户名
        :param password: 密码
        """
        url = urljoin(self.base_url, 'login')
        data = {
            'username': username,
            'password': password
        }
 
        response = self.session.post(url, data=data).json()
        print('\n*****************************************')
        print(u'\n1、请求url: \n%s' % url)
        print(u'\n2、请求头信息:')
        pprint(self.session.headers)
        print(u'\n3、请求参数:')
        pprint(data)
        print(u'\n4、响应:')
        pprint(response)
        return response
 
    def info(self):
        """
        详情接口
        """
        url = urljoin(self.base_url, 'info')
        response = self.session.get(url).json()
 
        print('\n*****************************************')
        print(u'\n1、请求url: \n%s' % url)
        print(u'\n2、请求头信息:')
        pprint(self.session.headers)
        print(u'\n3、请求cookies:')
        pprint(dict(self.session.cookies))
        print(u'\n4、响应:')
        pprint(response)
        return response
 
 
class TestLogin(unittest.TestCase):
 
    @classmethod
    def setUpClass(cls):
        cls.base_url = 'http://127.0.0.1:5000'
        cls.username = 'admin'
        cls.password = '123456'
        cls.app = DemoApi(cls.base_url)
 
    def test_login(self):
        """
        测试登录
        """
        response = self.app.login(self.username, self.password)
        assert response['code'] == 200
        assert response['msg'] == 'success'
 
    def test_info(self):
        """
        测试获取详情信息
        """
        self.app.login(self.username, self.password)
        response = self.app.info()
        assert response['code'] == 200
        assert response['msg'] == 'success'
        assert response['data'] == 'info'

大功告成,我们把多个相关接口调用封装到一个类中,使用同一个requests Session实例来保持cookies,并且在调用过程中打印出了日志,我们所有目标都实现了,但再看下脚本,又会感觉不太舒服,在每个方法里,都要写一遍print 1、2、3... 要拼url、还要很多细节等等,但其实我们真正需要做的只是拼出关键的参数(url参数、body参数或者传入headers信息),可不可以只需定义必须的信息,然后把其它共性的东西都封装起来呢,统一放到一个地方去管理?

封装重复操作

来,我们再整理一下我们的需求:

  • 首先,不想去重复做拼接url的操作
  • 然后,不想每次都去手工打印日志
  • 不想和requests session打交道
  • 只想定义好参数就直接调用

我们先看一下实现后,脚本可能是什么样:

class DemoApi(object):
 
    def __init__(self, base_url):
        self.base_url = base_url
 
    @request(url='login', method='post')
    def login(self, username, password):
        """
        登录接口
        """
        data = {
            'username': username,
            'password': password
        }
 
        return {'data': data}
 
    @request(url='info', method='get')
    def info(self):
        """
        详情接口
        """
        pass

调用登录接口的日志

******************************************************
1、接口描述
登录接口
 
2、请求url
http://127.0.0.1:5000/login
 
3、请求方法
post
 
4、请求headers
{
    "Accept": "*/*",
    "Accept-Encoding": "gzip, deflate",
    "Connection": "keep-alive",
    "User-Agent": "python-requests/2.7.0 CPython/2.7.10 Darwin/16.4.0"
}
 
5、body参数
{
    "password": "123456",
    "username": "admin"
}
 
6、响应结果
{
    "code": 200,
    "msg": "success"
}

在这里,我们使用python的装饰器功能,把公共特性封装到装饰器中去实现。现在感觉好多了,没什么多余的东西了,我们可以专注于关键参数的构造,剩下的就是如何去实现这个装饰器了,我们先理一下思路:

  • 获取装饰器参数
  • 获取函数/方法参数
  • 把装饰器和函数定义的参数合并
  • 拼接url
  • 处理requests session,有则使用,无则新生成一个
  • 组装所有参数,发送http请求并打印日志

七、扩展

http接口请求的姿势我们定义好了,我们还可以做些什么呢?

  1. 非HTTP协议接口
  2. 测试用例编写
  3. 配置文件管理
  4. 测试数据管理
  5. 工具类编写
  6. 测试报告生成
  7. 持续集成等等

需要做的还是挺多的,要做什么不要做什么,或者先做哪个,我觉得可以根据以下几点去判断:

  • 是否有利于提高团队生产效率
  • 是否有利于提高测试质量
  • 有没有现成的轮子可以用

下面就几项主要的点进行一下说明,限于篇幅,不再展开了

测试报告

这个应该是大家最关心的了,毕竟这是测试工作的产出;

目前python的主流单元测试框均有report插件,因此不建议自己再编写,除非有特殊需求的。

  • pytest:推荐使用pytest-html和allure pytest
  • unittest:推荐使用HTMLTestRunner

持续集成

持续集成推荐使用Jenkins,运行环境、定时任务、触发运行、邮件发送等一系列功能均可以在Jenkins上实现。

测试用例编写

推荐遵守如下规则:

  • 原子性:每个用例保持独立,彼此不耦合,以降低干扰;
  • 专一性:一个用例应该专注于验证一件事情,而不是做很多事情,一个测试点不要重复验证;
  • 稳定性:绝大多数用例应该是非常稳定的,也就是说不会经常因为除环境以外的因素挂掉,因为如果在一个测试项目中有很多不稳定的用例的话,测试结果就不能很好的反应项目质量;
  • 分类清晰:有相关性的用例应写到一个模块或一个测试类里,这样做即方便维护,又提高了报告的可读性;

测试工具类

这个可以根据项目情况去做,力求简化一些类库的使用,数据库访问、日期时间、序列化与反序列化等数据处理,或者封装一些常用操作,如随机生成订单号等等,以提高脚本编写效率。

测试数据管理

常见的方式有写在代码里、写在配置文件里(xml、yaml、json、.py、excel等)、写在数据库里等,该处没有什么好推荐的,建议根据个人喜好,怎么方便怎么来就可以。

八、pithy测试框架介绍

pithy意为简洁有力的,意在简化自动化接口测试,提高测试效率

目前实现的功能如下:

  • 一键生成测试项目
  • http client封装
  • thrift接口封装
  • 简化配置文件使用
  • 优化JSON、日期等工具使用

编写测试用例推荐使用pytest,pytest提供了很多测试工具以及插件,可以满足大部分测试需求。

安装

pip install pithy-test
pip install pytest

使用

一键生成测试项目

>>>  pithy-cli init
请选择项目类型,输入api或者app: api
请输入项目名称,如pithy-api-test: pithy-api-test
开始创建pithy-api-test项目
开始渲染...
生成 api/.gitignore                   [√]
生成 api/apis/__init__.py             [√]
生成 api/apis/pithy_api.py            [√]
生成 api/cfg.yaml                     [√]
生成 api/db/__init__.py               [√]
生成 api/db/pithy_db.py               [√]
生成 api/README.MD                    [√]
生成 api/requirements.txt             [√]
生成 api/test_suites/__init__.py      [√]
生成 api/test_suites/test_login.py    [√]
生成 api/utils/__init__.py            [√]
生成成功,请使用编辑器打开该项目

生成项目树

>>> tree pithy-api-test
pithy-api-test
├── README.MD
├── apis
│   ├── __init__.py
│   └── pithy_api.py
├── cfg.yaml
├── db
│   ├── __init__.py
│   └── pithy_db.py
├── requirements.txt
├── test_suites
│   ├── __init__.py
│   └── test_login.py
└── utils
    └── __init__.py
 
4 directories, 10 files

调用HTTP登录接口示例

from pithy import request
 
@request(url='http://httpbin.org/post', method='post')
def post(self, key1='value1'):
    """
    post method
    """
    data = {
        'key1': key1
    }
    return dict(data=data)
 
# 使用
response = post('test').to_json()     # 解析json字符,输出为字典
response = post('test').json          # 解析json字符,输出为字典
response = post('test').to_content()  # 输出为字符串
response = post('test').content       # 输出为字符串
response = post('test').get_cookie()  # 输出cookie对象
response = post('test').cookie        # 输出cookie对象
 
# 结果取值, 假设此处response = {'a': 1, 'b': { 'c': [1, 2, 3, 4]}}
response = post('13111111111', '123abc').json
 
print response.b.c   # 通过点号取值,结果为[1, 2, 3, 4]
 
print response('$.a') # 通过object path取值,结果为1
 
for i in response('$..c[@>3]'): # 通过object path取值,结果为选中c字典里大于3的元素
    print i

优化JSON、字典使用

# 1、操作JSON的KEY
from pithy import JSONProcessor
dict_data = {'a': 1, 'b': {'a': [1, 2, 3, 4]}}
json_data = json.dumps(dict_data)
result = JSONProcessor(json_data)
print result.a     # 结果:1
print result.b.a   # 结果:[1, 2, 3, 4]
 
# 2、操作字典的KEY
dict_data = {'a': 1, 'b': {'a': [1, 2, 3, 4]}}
result = JSONProcessor(dict_data)
print result.a     # 1
print result.b.a   # [1, 2, 3, 4]
 
# 3、object path取值
raw_dict = {
    'key1':{
        'key2':{
            'key3': [1, 2, 3, 4, 5, 6, 7, 8]
        }
    }
}
 
jp = JSONProcessor(raw_dict)
for i in jp('$..key3[@>3]'):
    print i
    
# 4、其它用法
dict_1 = {'a': 'a'}
json_1 = '{"b": "b"}'
jp = JSONProcessor(dict_1, json_1, c='c')
print(jp)

九、总结

在本文中,我们以提高脚本开发效率为前提,一步一步打造了一个简易的测试框架,但因水平所限,并未涉及测试数据初始化清理、测试中如何MOCK等话题,前路依然任重而道远,希望给大家一个启发,不足之处还望多多指点,非常感谢。

PS:这里分享一套软件测试的自学教程合集。 对于在测试行业发展的小伙伴们来说应该会很有帮助。除了基础入门的资源,博主也收集不少进阶自动化的资源,从理论到实战,知行合一才能真正的掌握。全套内容已经打包到网盘,内容总量接近500个G。 如需要软件测试学习资料,**关注公众号(互联网杂货铺),**后台回复1,整理不易,给个关注点个赞吧,谢谢各位大佬!

☑ 240集-零基础到精通全套视频课程
☑ [课件+源码]-完整配套的教程
☑ 18套-测试实战项目源码
☑ 37套-测试工具软件包
☑ 268道-真实面试题
☑ 200个模板-面试简历模板、测试方案模板、软件测试报告模板、测试分析模版、测试计划模板、性能测试报告、性能测试报告、性能测试脚本用例模板(信息完整)

这些资料,对于做【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴我走过了最艰难的路程,希望也能帮助到你!凡事要趁早,特别是技术行业,一定要提升技术功底。

相关推荐
羊小猪~~1 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
放飞自我的Coder31 分钟前
【python ROUGE BLEU jiaba.cut NLP常用的指标计算】
python·自然语言处理·bleu·rouge·jieba分词
正义的彬彬侠1 小时前
【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
python·机器学习·sklearn
张小生1801 小时前
PyCharm中 argparse 库 的使用方法
python·pycharm
秃头佛爷1 小时前
Python使用PDF相关组件案例详解
python
Dxy12393102161 小时前
python下载pdf
数据库·python·pdf
叶知安1 小时前
如何用pycharm连接sagemath?
ide·python·pycharm
weixin_432702261 小时前
代码随想录算法训练营第五十五天|图论理论基础
数据结构·python·算法·深度优先·图论
菜鸟清风1 小时前
ChromeDriver下载地址
python
deephub2 小时前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer