想要精通算法和SQL的成长之路 - 前缀和的应用

想要精通算法和SQL的成长之路 - 前缀和的应用

  • 前言
  • [一. 区域和检索 - 数组不可变](#一. 区域和检索 - 数组不可变)
  • [二. 二维区域和检索 - 矩阵不可变](#二. 二维区域和检索 - 矩阵不可变)
    • [2.1 前缀和的计算](#2.1 前缀和的计算)
    • [2.2 用前缀和计算二维区域和](#2.2 用前缀和计算二维区域和)
  • [三. 矩形区域不超过 K 的最大数值和](#三. 矩形区域不超过 K 的最大数值和)

前言

想要精通算法和SQL的成长之路 - 系列导航

一. 区域和检索 - 数组不可变

原题链接

思路如下:

  1. 我们统计每个元素的前缀和为preSum(i) ,不包括num[i]的值。
  2. 那么对于索引[left, right]之间的和,就可以利用前缀和来计算,值为:preSum(right+1) - preSum(left)

代码如下:

java 复制代码
public class NumArray {
    int[] preSums;

    public NumArray(int[] nums) {
        int n = nums.length;
        // 计算前缀和,指 preSums[i] 在下标i之前的元素和
        preSums = new int[n + 1];
        for (int i = 0; i < n; i++) {
            preSums[i + 1] = preSums[i] + nums[i];
        }
    }

    public int sumRange(int left, int right) {
        return preSums[right + 1] - preSums[left];
    }
}

二. 二维区域和检索 - 矩阵不可变

原题链接

2.1 前缀和的计算

我们先来看下,对于任意一个元素,从下标 (0,0)(i,j) 之间的区域和怎么计算。如图:

换成代码就是:

java 复制代码
preSums[i][j] = preSums[i][j - 1] + preSums[i - 1][j] - preSums[i - 1][j - 1] + matrix[i-1][j-1];

2.2 用前缀和计算二维区域和

如图:我们想计算A到D之间的区域和:

代码如下:(在设置二维数组的时候,可以增加一行和一列作为虚拟节点,数值为0)

java 复制代码
preSums[row2+1][col2+1] - preSums[row2+1][col1] - preSums[row1][col2+1] + preSums[row1][col1];

完整代码如下:

java 复制代码
public class NumMatrix {
    int preSums[][];

    public NumMatrix(int[][] matrix) {
        int row = matrix.length + 1;
        int col = matrix[0].length + 1;
        preSums = new int[row][col];
        // 第一列第一行的数值都是0
        for (int i = 1; i < row; i++) {
            for (int j = 1; j < col; j++) {
                preSums[i][j] = preSums[i][j - 1] + preSums[i - 1][j] - preSums[i - 1][j - 1] + matrix[i-1][j-1];
            }
        }
    }
    
    public int sumRegion(int row1, int col1, int row2, int col2) {
        return preSums[row2+1][col2+1] - preSums[row2+1][col1] - preSums[row1][col2+1] + preSums[row1][col1];
    }
}

三. 矩形区域不超过 K 的最大数值和

原题链接

这题目可以在题目二的基础上,我们自行遍历,以开始节点(startRow,startCol) 为起始位置,在遍历所有情况的结束节点(endRow,endCol) 之间的区域和。满足条件:

  • startRow <= endRow < row
  • startCol <= endCol < col

由于是二维空间,两个节点,因此一共是4层循环:

java 复制代码
public class Test363 {
    int preSum[][];

    public int maxSumSubmatrix(int[][] matrix, int k) {
        int row = matrix.length + 1;
        int col = matrix[0].length + 1;
        preSum = new int[row][col];
        // 结算前缀和
        for (int i = 1; i < row; i++) {
            for (int j = 1; j < col; j++) {
                preSum[i][j] = preSum[i][j - 1] + preSum[i - 1][j] - preSum[i - 1][j - 1] + matrix[i - 1][j - 1];
            }
        }
        int max = Integer.MIN_VALUE;
        // 起始节点的横纵坐标
        for (int startRow = 1; startRow < row; startRow++) {
            for (int startCol = 1; startCol < col; startCol++) {
            	// 结束节点的横纵坐标
                for (int endRow = startRow; endRow < row; endRow++) {
                    for (int endCol = startCol; endCol < col; endCol++) {
                        // 求得两个节点之间的区域和
                        int sumRegion = sumRegion(startRow, startCol, endRow, endCol);
                        if (sumRegion <= k) {
                            max = Math.max(max, sumRegion);
                        }
                    }
                }
            }
        }
        return max;
    }

    public int sumRegion(int row1, int col1, int row2, int col2) {
        return preSum[row2][col2] - preSum[row2][col1 - 1] - preSum[row1 - 1][col2] + preSum[row1 - 1][col1 - 1];
    }
}
相关推荐
naruto_lnq1 小时前
分布式系统安全通信
开发语言·c++·算法
Jasmine_llq2 小时前
《P3157 [CQOI2011] 动态逆序对》
算法·cdq 分治·动态问题静态化+双向偏序统计·树状数组(高效统计元素大小关系·排序算法(预处理偏序和时间戳)·前缀和(合并单个贡献为总逆序对·动态问题静态化
qq_297574672 小时前
【实战教程】SpringBoot 实现多文件批量下载并打包为 ZIP 压缩包
java·spring boot·后端
老毛肚2 小时前
MyBatis插件原理及Spring集成
java·spring·mybatis
学嵌入式的小杨同学2 小时前
【Linux 封神之路】信号编程全解析:从信号基础到 MP3 播放器实战(含核心 API 与避坑指南)
java·linux·c语言·开发语言·vscode·vim·ux
lang201509282 小时前
JSR-340 :高性能Web开发新标准
java·前端·servlet
Re.不晚2 小时前
Java入门17——异常
java·开发语言
爱吃rabbit的mq2 小时前
第09章:随机森林:集成学习的威力
算法·随机森林·集成学习
缘空如是2 小时前
基础工具包之JSON 工厂类
java·json·json切换
追逐梦想的张小年3 小时前
JUC编程04
java·idea