GMM模型与EM算法

GMM模型与EM算法 --> 聚类 -> 无监督机器学习[参考]

一、单个高斯分布GM的估计参数

1.1 高斯分布

结果趋近于正态分布

每次弹珠往下走的时候,碰到钉子会随机往左还是往右走,可以观测到多次随机过程结合的

高斯分布的似然函数

X1-XN 全部发生的总概率为:

二、混合高斯模型GMM参数估计

人群中随机选出 10000 个人来,测量他们的身高男女身高虽然都服从高斯分布,但是方差均值不同假设男 N(u1,o1) 女 N(u2,o2)能否估计 u1 o1? u2 o2?

2.1 GMM混合高斯分布

相关推荐
啊波次得饿佛哥3 分钟前
9. 神经网络(一.神经元模型)
人工智能·深度学习·神经网络
互联网之声11 分钟前
科家多功能美发梳:科技赋能,重塑秀发新生
人工智能·科技
Chatopera 研发团队15 分钟前
Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战
人工智能·pytorch·深度学习
Bruce_Liuxiaowei21 分钟前
AI时代的网络安全:传统技术的落寞与新机遇
人工智能·安全·web安全
Dipeak数巅科技22 分钟前
数巅科技连续中标大模型项目 持续助力央国企数智化升级
大数据·人工智能·数据分析
白白糖22 分钟前
深度学习 Pytorch 动态计算图与梯度下降入门
人工智能·pytorch·深度学习
云和恩墨27 分钟前
云计算、AI与国产化浪潮下DBA职业之路风云变幻,如何谋破局启新途?
数据库·人工智能·云计算·dba
BlackPercy1 小时前
【线性代数】列主元法求矩阵的逆
线性代数·机器学习·矩阵
EQUINOX11 小时前
3b1b线性代数基础
人工智能·线性代数·机器学习
一只码代码的章鱼1 小时前
粒子群算法 笔记 数学建模
笔记·算法·数学建模·逻辑回归