源码解析FlinkKafkaConsumer支持周期性水位线发送

背景

当flink消费kafka的消息时,我们经常会用到FlinkKafkaConsumer进行水位线的发送,本文就从源码看下FlinkKafkaConsumer.assignTimestampsAndWatermarks指定周期性水位线发送的流程

FlinkKafkaConsumer水位线发送

1.首先从Fetcher类开始,创建Fetcher类的时候会构建一个周期性的水位线发送线程并启动

java 复制代码
        // if we have periodic watermarks, kick off the interval scheduler
        if (timestampWatermarkMode == WITH_WATERMARK_GENERATOR && autoWatermarkInterval > 0) {
            PeriodicWatermarkEmitter<T, KPH> periodicEmitter =
                    new PeriodicWatermarkEmitter<>(
                            checkpointLock,
                            subscribedPartitionStates,
                            watermarkOutputMultiplexer,
                            processingTimeProvider,
                            autoWatermarkInterval);

            periodicEmitter.start();
        }

2.随后,PeriodicWatermarkEmitter中注册处理时间定时器,周期性执行

java 复制代码
        public void start() {
            timerService.registerTimer(timerService.getCurrentProcessingTime() + interval, this);
        }

        @Override
        public void onProcessingTime(long timestamp) {

            synchronized (checkpointLock) {
                for (KafkaTopicPartitionState<?, ?> state : allPartitions) {
                    // 这里当前算子任务消费的kafka 分区分别记录每个分区的水位值
                    state.onPeriodicEmit();
                }
				//这里当前算子会把自己消费的kafka分区的所有水位线取最小值后当成当前算子任务自身的水位线发送出去,注意这里是当前算子任务级别的
                watermarkOutputMultiplexer.onPeriodicEmit();
            }

            // schedule the next watermark
            timerService.registerTimer(timerService.getCurrentProcessingTime() + interval, this);
        }
    }

3.对应state.onPeriodicEmit();记录每个kafka分区的水位线方法

java 复制代码
    @Override
    public void onPeriodicEmit(WatermarkOutput output) {
        final org.apache.flink.streaming.api.watermark.Watermark next = wms.getCurrentWatermark();
        if (next != null) {
            output.emitWatermark(new Watermark(next.getTimestamp()));
        }
    }
其中 WatermarkOutput output.emitWatermark(new Watermark(next.getTimestamp()))代码如下:
        public DeferredOutput(OutputState state) {
            this.state = state;
        }

        @Override
        public void emitWatermark(Watermark watermark) {
            state.setWatermark(watermark.getTimestamp());
        }
所以这里最终效果只是对应state(kafka分区[注意,一个算子任务有可能消费好几个kafka分区])上设置了水位线
        /**
         * Returns true if the watermark was advanced, that is if the new watermark is larger than
         * the previous one.
         *
         * <p>Setting a watermark will clear the idleness flag.
         */
        public boolean setWatermark(long watermark) {
            this.idle = false;
            final boolean updated = watermark > this.watermark;
            // 这里也可以看出来,即使代码里面发送了更小值的水位线,水位线也不会回退
            this.watermark = Math.max(watermark, this.watermark);
            return updated;
        }        

4.对应算子任务组合当前任务消费的所有分区水位线的方法

java 复制代码
private void updateCombinedWatermark() {
        long minimumOverAllOutputs = Long.MAX_VALUE;

        boolean hasOutputs = false;
        boolean allIdle = true;
        for (OutputState outputState : watermarkOutputs) {
            if (!outputState.isIdle()) {
                minimumOverAllOutputs = Math.min(minimumOverAllOutputs, outputState.getWatermark());
                allIdle = false;
            }
            hasOutputs = true;
        }

        // if we don't have any outputs minimumOverAllOutputs is not valid, it's still
        // at its initial Long.MAX_VALUE state and we must not emit that
        // 如果算子任务不消费任何分区,它不会发出任何水位线,这里是不是就是kafka消费者要小于kafka主题的原因所在???
        if (!hasOutputs) {
            return;
        }

        if (allIdle) {// 如果当前算子任务处于空闲时间,标识空闲,以便后续算子可以继续推进
            underlyingOutput.markIdle();
        } else if (minimumOverAllOutputs > combinedWatermark) {
            combinedWatermark = minimumOverAllOutputs;
            underlyingOutput.emitWatermark(new Watermark(minimumOverAllOutputs));
        }
    }```

    
相关推荐
周杰伦_Jay2 分钟前
【Git操作详解】Git进行版本控制与管理,包括分支,提交,合并,标签、远程仓库查看
大数据·ide·git·科技·分类·github
lifallen39 分钟前
从Apache Doris 学习 HyperLogLog
java·大数据·数据仓库·算法·apache
DolphinScheduler社区2 小时前
# 3.1.8<3.2.0<3.3.1,Apache DolphinScheduler集群升级避坑指南
java·大数据·开源·apache·任务调度·海豚调度
智海观潮3 小时前
HBase高级特性、rowkey设计以及热点问题处理
大数据·hadoop·hbase
zskj_qcxjqr3 小时前
七彩喜理疗艾灸机器人:传统中医与现代科技的融合创新
大数据·人工智能·科技·机器人
AutoMQ3 小时前
活动回顾 | AutoMQ 新加坡 TOKEN2049:展示高效 Web3 数据流基础设施
大数据·web3
龙山云仓4 小时前
迈向生成式软件制造新纪元:行动纲领与集结号
大数据·人工智能·机器学习·区块链·制造
武子康5 小时前
大数据-121 - Flink 时间语义详解:EventTime、ProcessingTime、IngestionTime 与 Watermark机制全解析
大数据·后端·flink
刀客Doc6 小时前
刀客doc:亚马逊广告再下一城,拿下微软DSP广告业务
大数据·人工智能·microsoft
戚砚笙7 小时前
Flink进阶:从“会用”到“用明白”的踩坑与实战总结
flink