3D 生成重建008-zero123让扩散模型了解空间信息zero-shot 单图生3d

3D 生成重建008-zero123让扩散模型了解空间信息zero-shot 单图生3d


文章目录

    • 0
    • [0 论文工作](#0 论文工作)
    • [1 论文方法](#1 论文方法)
      • [1.1 条件生成微调](#1.1 条件生成微调)
      • [1.2 维护3d表示](#1.2 维护3d表示)
    • [2 效果](#2 效果)

0

0 论文工作

之前分享的工作主要尝试是从一个pre-trained 文生图的diffusion模型中去蒸馏知识,从而去维护一个3d的表示形式。这种方法固然能够进行一个文生3d的任务,但是一个比较重要的问题就是细节确实,细节问题一方面和分辨率有关系,另外一个方面可能和通过蒸馏去强势维护一个3d表示有关,当视图之间一致性存在差异的时候,势必会造成通过均值的形式进行表达,maybe这也是细节模糊的一个因素。

zero-1-to-3,是一个单图生成3d的任务。核心的思想就是在一个大型的3d数据集objaverse上对一个扩散模型进行微调,从而将3d数据集中视角相关的信息注入到2d的扩散模型,让扩散模型能够生成不同视角的图像。相比2d数据集,这个3d数据集中的数据量已经很小了,但是这依然是一个很消耗资源的任务。

参考
zero123

1 论文方法

1.1 条件生成微调

如上图所示 ,论文的核心贡献是尝试优化了一个latent diffusion模型,将原图和视角信息作为输入进行训练。简单的理解可以拿congtrolnet做对比,controlnet允许轮廓,深度,法线等条件作为输入,不同的是zero123是用原图和相机信息联合起来作为输入。

1.2 维护3d表示

在这个地方他采用的SJC的那一套策略去优化nerfdreamfusion and SJC中提到扰动平均得分策略。

2 效果

相关推荐
董厂长2 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
G皮T5 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼6 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间6 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享6 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾6 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码6 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5897 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien7 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松7 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能