3D 生成重建008-zero123让扩散模型了解空间信息zero-shot 单图生3d

3D 生成重建008-zero123让扩散模型了解空间信息zero-shot 单图生3d


文章目录

    • 0
    • [0 论文工作](#0 论文工作)
    • [1 论文方法](#1 论文方法)
      • [1.1 条件生成微调](#1.1 条件生成微调)
      • [1.2 维护3d表示](#1.2 维护3d表示)
    • [2 效果](#2 效果)

0

0 论文工作

之前分享的工作主要尝试是从一个pre-trained 文生图的diffusion模型中去蒸馏知识,从而去维护一个3d的表示形式。这种方法固然能够进行一个文生3d的任务,但是一个比较重要的问题就是细节确实,细节问题一方面和分辨率有关系,另外一个方面可能和通过蒸馏去强势维护一个3d表示有关,当视图之间一致性存在差异的时候,势必会造成通过均值的形式进行表达,maybe这也是细节模糊的一个因素。

zero-1-to-3,是一个单图生成3d的任务。核心的思想就是在一个大型的3d数据集objaverse上对一个扩散模型进行微调,从而将3d数据集中视角相关的信息注入到2d的扩散模型,让扩散模型能够生成不同视角的图像。相比2d数据集,这个3d数据集中的数据量已经很小了,但是这依然是一个很消耗资源的任务。

参考
zero123

1 论文方法

1.1 条件生成微调

如上图所示 ,论文的核心贡献是尝试优化了一个latent diffusion模型,将原图和视角信息作为输入进行训练。简单的理解可以拿congtrolnet做对比,controlnet允许轮廓,深度,法线等条件作为输入,不同的是zero123是用原图和相机信息联合起来作为输入。

1.2 维护3d表示

在这个地方他采用的SJC的那一套策略去优化nerfdreamfusion and SJC中提到扰动平均得分策略。

2 效果

相关推荐
金融小师妹9 分钟前
基于NLP语义解析的联储政策信号:强化学习框架下的12月降息概率回升动态建模
大数据·人工智能·深度学习·1024程序员节
山顶夕景1 小时前
【RL】Does RLVR enable LLMs to self-improve?
深度学习·llm·强化学习·rlvr
AKAMAI2 小时前
提升 EdgeWorker 可观测性:使用 DataStream 设置日志功能
人工智能·云计算
银空飞羽2 小时前
让Trae CN SOLO自主发挥,看看能做出一个什么样的项目
前端·人工智能·trae
cg50173 小时前
基于 Bert 基本模型进行 Fine-tuned
人工智能·深度学习·bert
Dev7z3 小时前
基于Matlab图像处理的EAN条码自动识别系统设计与实现
图像处理·人工智能
Curvatureflight3 小时前
GPT-4o Realtime 之后:全双工语音大模型如何改变下一代人机交互?
人工智能·语言模型·架构·人机交互
6***x5453 小时前
C在机器学习中的ML.NET应用
人工智能·机器学习
陈天伟教授3 小时前
基于学习的人工智能(1)机器学习
人工智能·学习
用户47949283569153 小时前
React Grab 原理篇:它是怎么"偷窥" React 的?
人工智能·react.js·ai编程