3D 生成重建008-zero123让扩散模型了解空间信息zero-shot 单图生3d

3D 生成重建008-zero123让扩散模型了解空间信息zero-shot 单图生3d


文章目录

    • 0
    • [0 论文工作](#0 论文工作)
    • [1 论文方法](#1 论文方法)
      • [1.1 条件生成微调](#1.1 条件生成微调)
      • [1.2 维护3d表示](#1.2 维护3d表示)
    • [2 效果](#2 效果)

0

0 论文工作

之前分享的工作主要尝试是从一个pre-trained 文生图的diffusion模型中去蒸馏知识,从而去维护一个3d的表示形式。这种方法固然能够进行一个文生3d的任务,但是一个比较重要的问题就是细节确实,细节问题一方面和分辨率有关系,另外一个方面可能和通过蒸馏去强势维护一个3d表示有关,当视图之间一致性存在差异的时候,势必会造成通过均值的形式进行表达,maybe这也是细节模糊的一个因素。

zero-1-to-3,是一个单图生成3d的任务。核心的思想就是在一个大型的3d数据集objaverse上对一个扩散模型进行微调,从而将3d数据集中视角相关的信息注入到2d的扩散模型,让扩散模型能够生成不同视角的图像。相比2d数据集,这个3d数据集中的数据量已经很小了,但是这依然是一个很消耗资源的任务。

参考
zero123

1 论文方法

1.1 条件生成微调

如上图所示 ,论文的核心贡献是尝试优化了一个latent diffusion模型,将原图和视角信息作为输入进行训练。简单的理解可以拿congtrolnet做对比,controlnet允许轮廓,深度,法线等条件作为输入,不同的是zero123是用原图和相机信息联合起来作为输入。

1.2 维护3d表示

在这个地方他采用的SJC的那一套策略去优化nerfdreamfusion and SJC中提到扰动平均得分策略。

2 效果

相关推荐
Toky丶7 分钟前
具身智能(一)关于VLA模型π0
人工智能
岛屿旅人7 分钟前
英国国防部推进本土化开放架构建设
网络·人工智能·安全·web安全·架构
chenchihwen8 分钟前
AI代码开发宝库系列:LangChain 工具链:从LCEL到实际应用
人工智能·python·langchain·rag
TwoAnts&DingJoy13 分钟前
数据分析-数据沙箱
人工智能·python·安全·数据分析·数据沙箱
FreeCode14 分钟前
Agent开发:LangChain1.0快速入门(一)
人工智能·llm·agent
3DVisionary33 分钟前
3D光学弯管测量系统:空调管路高效质量管控利器
数码相机·3d·量子计算·3d光学测量·弯管检测·空调管路·质量管控
CV实验室37 分钟前
CV论文速递: 覆盖医学影像分析、视频理解与生成、3D场景理解与定位等方向! (10.27-10.31)
人工智能·计算机视觉·3d·音视频
PixelMind38 分钟前
【LUT技术专题】SVDLUT: 基于SVD优化的3DLUT
图像处理·深度学习·lut
CHOTEST中图仪器39 分钟前
光学3D表面轮廓仪中Rz代表什么?如何精准测量Rz?
3d·rz·微观形貌·3d光学轮廓仪
飞哥数智坊1 小时前
MiniMax 是谁?为什么 M2 一出,大家又沸腾了?
人工智能