LangChain结合milvus向量数据库以及GPT3.5结合做知识库问答之二 --->代码实现

python 复制代码
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.cohere import CohereEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Milvus
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain.chains import RetrievalQAWithSourcesChain
import os
from langchain.llms import OpenAI

OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")

chain = None


def do_work():
    global chain
    loader = PyPDFLoader("./王天龙-算法工程师-研究生.pdf")
    docs = loader.load_and_split()
    embeddings = OpenAIEmbeddings()

    vector_db = Milvus.from_documents(
        docs,
        embeddings,
        connection_args={
            "host": "ljxwtl.cn", "port": "19530"
        }
    )

    chain = RetrievalQAWithSourcesChain.from_chain_type(
        OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
        chain_type="map_reduce",
        retriever=vector_db.as_retriever()
    )


def __test_do_work():
    do_work()


def query(question):
    global chain

    response = chain(
        inputs={"question": question},
        return_only_outputs=True
    )
    print(response)


def __test_query():
    query("王天龙的简介")


if __name__ == '__main__':
    __test_do_work()
    __test_query()
bash 复制代码
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.cohere import CohereEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Milvus
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain.chains import RetrievalQAWithSourcesChain
import os
from langchain.llms import OpenAI

OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")

chain = None


def do_work():
    global chain
    loader = PyPDFLoader("./王天龙-算法工程师-研究生.pdf")
    docs = loader.load_and_split()
    embeddings = OpenAIEmbeddings()

    vector_db = Milvus.from_documents(
        docs,
        embeddings,
        connection_args={
            "host": "ljxwtl.cn", "port": "19530"
        }
    )

    chain = RetrievalQAWithSourcesChain.from_chain_type(
        OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
        chain_type="map_reduce",
        retriever=vector_db.as_retriever()
    )


def __test_do_work():
    do_work()


def query(question):
    global chain

    response = chain(
        inputs={"question": question},
        return_only_outputs=True
    )
    print(response)


def __test_query():
    query("王天龙的工作经验")


if __name__ == '__main__':
    __test_do_work()
    __test_query()
相关推荐
百***49001 小时前
Redis-配置文件
数据库·redis·oracle
老纪的技术唠嗑局1 小时前
OceanBase 年度发布会 Hands-on AI Workshop 回顾
数据库
艾体宝IT1 小时前
艾体宝干货 | Redis Python 开发系列#5 高可用与集群部署指南
数据库
3***89191 小时前
开放自己本机的mysql允许别人连接
数据库·mysql·adb
X***C8621 小时前
使用bitnamiredis-sentinel部署Redis 哨兵模式
数据库·redis·sentinel
f***01931 小时前
CC++链接数据库(MySQL)超级详细指南
c语言·数据库·c++
q***23571 小时前
MySQL 篇 - Java 连接 MySQL 数据库并实现数据交互
java·数据库·mysql
W***95241 小时前
在Spring Boot项目中使用MySQL数据库
数据库·spring boot·mysql
合方圆~小文1 小时前
球型摄像机作为现代监控系统的核心设备
java·数据库·c++·人工智能
q***87602 小时前
yum安装redis
数据库·redis·缓存