2022最新版-李宏毅机器学习深度学习课程-P15 自动调整学习速率(learning rate)

一、使用场合

当loss函数表面崎岖不平时,可以采用这招。

被困住时不一定是小梯度,还有可能在峡谷两端来回跳跃,下不去了

例子

当误差表面是凸函数(可以想成长轴很大的椭圆)时,可能在峡谷两端交替,再次减小学习率时,可能update很多次但走的贼慢,很难到达目标。

二、解决方法

不同的状态需要不同的学习率,所以引入Σ

与前面的所有梯度有关(注意只与梯度大小有关)

小梯度时大步走,大梯度时小步走

RMSProp

再引入α,控制比例(被以前梯度影响的多少)

Adam优化器

经常用的Adam优化器,就是采用了RMSProp和动量的结合

动量是与梯度方向有关的,但RMSProp只与其大小有关,所以不会抵消掉!!

例子

此时,该例子变成了这样,琢磨之后就知道很合理了,最后可以到目标。

为什么有向上下的一跃?Y轴方向累积了很多小的Σ,累积到一定地步后,下一step变得很大就喷出去了,走到大梯度的地方又迈着小步子回来了(左右山谷有摩擦力震荡着下来了)

如何解决这个问题?

Learning Rate Decay

加入decay,随着时间的增大,学习率在变小

Warm Up

还有一个变化叫做 warm up(预热)

为什么要先变大呢?刚开始Σ的统计量有很大误差(小学习率探索,先收集统计数据),只有足够多的统计后才会变准确。

实例论文支撑的warm up

三、总结

相关推荐
懷淰メ几秒前
python3GUI--基于深度学习的人脸识别管理系统(详细图文介绍)
人工智能·深度学习·人脸识别·pyqt·人脸·识别系统·人脸管理
CoovallyAIHub3 分钟前
一文读懂大语言模型家族:LLM、MLLM、LMM、VLM核心概念全解析
深度学习·算法·计算机视觉
四谎真好看11 分钟前
MySQL 学习笔记(运维篇1)
运维·数据库·笔记·学习·mysql·学习笔记
Keep_Trying_Go41 分钟前
文生图算法C4Synth: Cross-Caption Cycle-Consistent Text-to-Image Synthesis详解
人工智能·pytorch·深度学习·计算机视觉·文生图
智算菩萨1 小时前
【Python机器学习】交叉验证与超参数调优:自动化寻优之旅
人工智能·深度学习·机器学习
hssfscv1 小时前
Javaweb学习笔记——Web
笔记·学习·web
随意起个昵称1 小时前
【题解学习】序列题
学习·算法
汤姆yu1 小时前
基于深度学习的交通标志识别系统
人工智能·深度学习
小鸡吃米…1 小时前
机器学习 - Python 库
人工智能·python·机器学习
正月十六工作室1 小时前
关键能力 | SMART 原则
学习·关键能力·smart原则