2022最新版-李宏毅机器学习深度学习课程-P15 自动调整学习速率(learning rate)

一、使用场合

当loss函数表面崎岖不平时,可以采用这招。

被困住时不一定是小梯度,还有可能在峡谷两端来回跳跃,下不去了

例子

当误差表面是凸函数(可以想成长轴很大的椭圆)时,可能在峡谷两端交替,再次减小学习率时,可能update很多次但走的贼慢,很难到达目标。

二、解决方法

不同的状态需要不同的学习率,所以引入Σ

与前面的所有梯度有关(注意只与梯度大小有关)

小梯度时大步走,大梯度时小步走

RMSProp

再引入α,控制比例(被以前梯度影响的多少)

Adam优化器

经常用的Adam优化器,就是采用了RMSProp和动量的结合

动量是与梯度方向有关的,但RMSProp只与其大小有关,所以不会抵消掉!!

例子

此时,该例子变成了这样,琢磨之后就知道很合理了,最后可以到目标。

为什么有向上下的一跃?Y轴方向累积了很多小的Σ,累积到一定地步后,下一step变得很大就喷出去了,走到大梯度的地方又迈着小步子回来了(左右山谷有摩擦力震荡着下来了)

如何解决这个问题?

Learning Rate Decay

加入decay,随着时间的增大,学习率在变小

Warm Up

还有一个变化叫做 warm up(预热)

为什么要先变大呢?刚开始Σ的统计量有很大误差(小学习率探索,先收集统计数据),只有足够多的统计后才会变准确。

实例论文支撑的warm up

三、总结

相关推荐
minhuan9 分钟前
大模型应用:大模型本地部署实战:从零构建可视化智能学习助手.2
学习·生成式ai·大模型应用·大模型本地部署·学习助手
only-code11 分钟前
Fast-DetectGPT:用“条件概率曲率”拆穿 AI 伪装的文本
人工智能·深度学习·机器学习·ai大模型·论文解读·ai检测·文本检测
兆。29 分钟前
python全栈-人工智能基础-机器学习
人工智能·python·机器学习
BullSmall1 小时前
《道德经》第六十七章
学习
qy-ll1 小时前
最新MMO-IG生成图像论文学习(25/11/19)
图像处理·深度学习·学习·计算机视觉·论文学习·遥感
Coovally AI模型快速验证1 小时前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
人工智能·科技·yolo·目标检测·机器学习·计算机视觉
fmk10231 小时前
TailwindCSS 学习笔记
笔记·学习
8***B1 小时前
Python机器学习库Scikit-learn使用
python·机器学习·scikit-learn
月下的郁王子2 小时前
进阶学习 PHP 中的二进制和位运算
android·学习·php
xinxingrs2 小时前
贪心算法、动态规划以及相关应用(python)
笔记·python·学习·算法·贪心算法·动态规划