2022最新版-李宏毅机器学习深度学习课程-P15 自动调整学习速率(learning rate)

一、使用场合

当loss函数表面崎岖不平时,可以采用这招。

被困住时不一定是小梯度,还有可能在峡谷两端来回跳跃,下不去了

例子

当误差表面是凸函数(可以想成长轴很大的椭圆)时,可能在峡谷两端交替,再次减小学习率时,可能update很多次但走的贼慢,很难到达目标。

二、解决方法

不同的状态需要不同的学习率,所以引入Σ

与前面的所有梯度有关(注意只与梯度大小有关)

小梯度时大步走,大梯度时小步走

RMSProp

再引入α,控制比例(被以前梯度影响的多少)

Adam优化器

经常用的Adam优化器,就是采用了RMSProp和动量的结合

动量是与梯度方向有关的,但RMSProp只与其大小有关,所以不会抵消掉!!

例子

此时,该例子变成了这样,琢磨之后就知道很合理了,最后可以到目标。

为什么有向上下的一跃?Y轴方向累积了很多小的Σ,累积到一定地步后,下一step变得很大就喷出去了,走到大梯度的地方又迈着小步子回来了(左右山谷有摩擦力震荡着下来了)

如何解决这个问题?

Learning Rate Decay

加入decay,随着时间的增大,学习率在变小

Warm Up

还有一个变化叫做 warm up(预热)

为什么要先变大呢?刚开始Σ的统计量有很大误差(小学习率探索,先收集统计数据),只有足够多的统计后才会变准确。

实例论文支撑的warm up

三、总结

相关推荐
lixin55655616 小时前
基于深度生成对抗网络的高质量图像生成模型研究与实现
java·人工智能·pytorch·python·深度学习·语言模型
laplace012316 小时前
大模型整个训练流程
人工智能·深度学习·embedding·agent·rag
沉默-_-16 小时前
力扣hot100-子串(C++)
c++·学习·算法·leetcode·子串
Master_oid16 小时前
机器学习30:神经网络压缩(Network Compression)①
人工智能·神经网络·机器学习
沃达德软件16 小时前
智能车辆检索系统解析
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·目标跟踪
java1234_小锋16 小时前
【专辑】AI大模型应用开发入门-拥抱Hugging Face与Transformers生态 - 使用datasets库加载Huggingface数据集
人工智能·深度学习
XuanTao7717 小时前
【安卓工具实测】影视仓更新!!追剧党狂喜!影视仓无广告版太香了!
深度学习·数码相机·智能手机·软件工程·软件构建
●VON17 小时前
从系统亮度监听到 UI 重绘:Flutter for OpenHarmony TodoList 深色模式的端到端响应式实现
学习·flutter·ui·openharmony·布局·von
新-code17 小时前
ros学习
学习·机器人
yi.Ist17 小时前
关于若干基础的几何问题
c++·学习·算法·计算几何