2022最新版-李宏毅机器学习深度学习课程-P15 自动调整学习速率(learning rate)

一、使用场合

当loss函数表面崎岖不平时,可以采用这招。

被困住时不一定是小梯度,还有可能在峡谷两端来回跳跃,下不去了

例子

当误差表面是凸函数(可以想成长轴很大的椭圆)时,可能在峡谷两端交替,再次减小学习率时,可能update很多次但走的贼慢,很难到达目标。

二、解决方法

不同的状态需要不同的学习率,所以引入Σ

与前面的所有梯度有关(注意只与梯度大小有关)

小梯度时大步走,大梯度时小步走

RMSProp

再引入α,控制比例(被以前梯度影响的多少)

Adam优化器

经常用的Adam优化器,就是采用了RMSProp和动量的结合

动量是与梯度方向有关的,但RMSProp只与其大小有关,所以不会抵消掉!!

例子

此时,该例子变成了这样,琢磨之后就知道很合理了,最后可以到目标。

为什么有向上下的一跃?Y轴方向累积了很多小的Σ,累积到一定地步后,下一step变得很大就喷出去了,走到大梯度的地方又迈着小步子回来了(左右山谷有摩擦力震荡着下来了)

如何解决这个问题?

Learning Rate Decay

加入decay,随着时间的增大,学习率在变小

Warm Up

还有一个变化叫做 warm up(预热)

为什么要先变大呢?刚开始Σ的统计量有很大误差(小学习率探索,先收集统计数据),只有足够多的统计后才会变准确。

实例论文支撑的warm up

三、总结

相关推荐
码农小韩5 小时前
基于Linux的C++学习——动态数组容器vector
linux·c语言·开发语言·数据结构·c++·单片机·学习
嵌入式-老费5 小时前
外壳3D结构设计(学习的方法)
学习
山土成旧客5 小时前
【Python学习打卡-Day40】从“能跑就行”到“工程标准”:PyTorch训练与测试的规范化写法
pytorch·python·学习
Yyuanyuxin5 小时前
保姆级学习开发安卓手机软件(一)--安装软件及配置
学习
lambo mercy5 小时前
无监督学习
人工智能·深度学习
柠柠酱6 小时前
【深度学习Day4】告别暴力拉平!MATLAB老鸟带你拆解CNN核心:卷积与池化 (附高频面试考点)
深度学习
●VON6 小时前
跨模态暗流:多模态安全攻防全景解析
人工智能·学习·安全·von
向量引擎小橙6 小时前
推理革命与能耗:AI大模型应用落地的“冰山成本”与破局之路
大数据·人工智能·深度学习·集成学习
星火开发设计6 小时前
C++ map 全面解析与实战指南
java·数据结构·c++·学习·算法·map·知识
rayufo6 小时前
深度学习对三维图形点云数据分类
人工智能·深度学习·分类