2022最新版-李宏毅机器学习深度学习课程-P15 自动调整学习速率(learning rate)

一、使用场合

当loss函数表面崎岖不平时,可以采用这招。

被困住时不一定是小梯度,还有可能在峡谷两端来回跳跃,下不去了

例子

当误差表面是凸函数(可以想成长轴很大的椭圆)时,可能在峡谷两端交替,再次减小学习率时,可能update很多次但走的贼慢,很难到达目标。

二、解决方法

不同的状态需要不同的学习率,所以引入Σ

与前面的所有梯度有关(注意只与梯度大小有关)

小梯度时大步走,大梯度时小步走

RMSProp

再引入α,控制比例(被以前梯度影响的多少)

Adam优化器

经常用的Adam优化器,就是采用了RMSProp和动量的结合

动量是与梯度方向有关的,但RMSProp只与其大小有关,所以不会抵消掉!!

例子

此时,该例子变成了这样,琢磨之后就知道很合理了,最后可以到目标。

为什么有向上下的一跃?Y轴方向累积了很多小的Σ,累积到一定地步后,下一step变得很大就喷出去了,走到大梯度的地方又迈着小步子回来了(左右山谷有摩擦力震荡着下来了)

如何解决这个问题?

Learning Rate Decay

加入decay,随着时间的增大,学习率在变小

Warm Up

还有一个变化叫做 warm up(预热)

为什么要先变大呢?刚开始Σ的统计量有很大误差(小学习率探索,先收集统计数据),只有足够多的统计后才会变准确。

实例论文支撑的warm up

三、总结

相关推荐
星火开发设计30 分钟前
类型别名 typedef:让复杂类型更简洁
开发语言·c++·学习·算法·函数·知识
Gorgous—l1 小时前
数据结构算法学习:LeetCode热题100-多维动态规划篇(不同路径、最小路径和、最长回文子串、最长公共子序列、编辑距离)
数据结构·学习·算法
jay神1 小时前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
Hello_Embed2 小时前
libmodbus 移植 STM32(基础篇)
笔记·stm32·单片机·学习·modbus
songyuc2 小时前
【Llava】load_pretrained_model() 说明
人工智能·深度学习
名为沙丁鱼的猫7292 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
香芋Yu2 小时前
【机器学习教程】第04章 指数族分布
人工智能·笔记·机器学习
●VON2 小时前
Flutter for OpenHarmony 21天训练营 Day03 总结:从学习到输出,迈出原创第一步
学习·flutter·openharmony·布局·技术
依依yyy2 小时前
沪深300指数收益率波动性分析与预测——基于ARMA-GARCH模型
人工智能·算法·机器学习
香芋Yu2 小时前
【大模型教程——第四部分:大模型应用开发】第1章:提示工程与上下文学习 (Prompt Engineering & ICL)
学习·prompt