树叶识别系统python+Django网页界面+TensorFlow+算法模型+数据集+图像识别分类

一、介绍

树叶识别系统。使用Python作为主要编程语言开发,通过收集常见的6中树叶('广玉兰', '杜鹃', '梧桐', '樟叶', '芭蕉', '银杏')图片作为数据集,然后使用TensorFlow搭建ResNet50算法网络模型,通过对数据集进行处理后进行模型迭代训练,得到一个识别精度较高的H5模型文件。并基于Django框架开发网页端平台,实现用户在网页上上传一张树叶图片识别其名称。

二、系统效果图片展示

三、演示视频 and 代码 and 介绍

视频+代码+介绍:yuque.com/ziwu/yygu3z...

四、卷积神经网络介绍

卷积神经网络(Convolutional Neural Network, CNN)是一种专门用来处理具有类似网格结构数据的神经网络,如图像(2D网格的像素点)或声音信号(1D网格的音频振幅)。 卷积神经网络的特点:

  1. 局部感受野:CNN通过使用小的、局部的滤波器(称为卷积核)来扫描输入数据,从而捕捉局部的特征,如边缘、纹理等。
  2. 权重共享:同一个卷积核在整个输入数据上滑动,共享参数,这大大减少了模型的参数数量。
  3. 多层卷积层:通过堆叠多个卷积层,CNN可以学习到从简单到复杂的特征。
  4. 池化层:用于降维和减少计算量,同时增强了特征的不变性。
  5. 全连接层:在卷积层和池化层提取特征后,使用全连接层进行最终的分类。

使用TensorFlow搭建一个简单的卷积神经网络: 首先,假设我们要对CIFAR-10数据集进行分类。这是一个包含10个类别的60,000张32x32彩色图像的数据集。 以下是一个简单的CNN模型实例:

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models, datasets

# 1. 数据加载和预处理
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# 将像素值缩放到0到1之间
train_images, test_images = train_images / 255.0, test_images / 255.0

# 2. 模型构建
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))

# 3. 编译模型
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

# 4. 训练模型
history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))

# 5. 评估模型
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print('\nTest accuracy:', test_acc)

这个模型非常简单,只包含3个卷积层、2个最大池化层和2个全连接层。您可以根据需要调整网络结构和参数。

相关推荐
Shawn_Shawn3 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
冷雨夜中漫步5 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
33三 三like5 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a5 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
郝学胜-神的一滴5 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再5 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
腾讯云开发者6 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗6 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
喵手7 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控