DIN模型和SIM模型原理与实践

文章目录

1.DIN模型

原理

  • 计算用户Last N向量的加权平均
  • 权重是候选物品与Last N物品的相似度

缺点

  • 注意力层的计算量正比于n(用户行为序列的长度)
  • 只能记录最近的几百个物品,否则计算量太大
  • 只关心短期兴趣,会遗忘长期兴趣

2.SIM模型

对长期兴趣建模

原理

  • 对用户长期行为记录,n大小可以是几千
  • 对于每个候选物品,在用户Last N记录中快速查找,找到k个相似物品
  • 把Last N变成TopK,然后输入注意力层
  • 计算量从n降到k

算法步骤

1.查找

2.注意力机制

对比DIN,user侧的LastN交互记录 被换成了上一步查找到的TopK交互记录



参考文献

王树森推荐系统公开课-SIM模型
SIM论文
DIN论文

相关推荐
初学小刘10 小时前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
2301_8219199211 小时前
深度学习(四)
pytorch·深度学习
孤狼灬笑12 小时前
深度学习经典分类(算法分析与案例)
rnn·深度学习·算法·cnn·生成模型·fnn
Element_南笙13 小时前
吴恩达新课程:Agentic AI(笔记2)
数据库·人工智能·笔记·python·深度学习·ui·自然语言处理
星期天要睡觉13 小时前
深度学习——循环神经网络(RNN)实战项目:基于PyTorch的文本情感分析
人工智能·python·rnn·深度学习·神经网络
星期天要睡觉15 小时前
深度学习——循环神经网络(RNN)
人工智能·python·rnn·深度学习·神经网络
Blossom.11815 小时前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
java1234_小锋16 小时前
TensorFlow2 Python深度学习 - 循环神经网络(LSTM)示例
python·rnn·深度学习·tensorflow2
Costrict16 小时前
解锁新阵地!CoStrict 现已支持 JetBrains 系列 IDE
大数据·ide·人工智能·深度学习·自然语言处理·ai编程·visual studio