2023_Spark_实验十六:编写LoggerLevel方法及getLocalSparkSession方法

一、搭建Spark项目结构

在SparkProject模块的pom.xml文件中增加一下依赖,并等待依赖包下载完毕,如上图。

XML 复制代码
​

<!-- Spark及Scala的版本号 -->

<properties>

<scala.version>2.11</scala.version>

<spark.version>2.1.1</spark.version>

</properties>

<!-- Mysql组件

<dependency>

<groupId>mysql</groupId>

<artifactId>mysql-connector-java</artifactId>

<version>5.7.22.1</version>

</dependency> 的依赖 -->

<!-- Spark各个组件的依赖 -->

<dependencies>

<!-- https://mvnrepository.com/artifact/com.thoughtworks.paranamer/paranamer -->

<dependency>

<groupId>com.thoughtworks.paranamer</groupId>

<artifactId>paranamer</artifactId>

<version>2.8</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_${scala.version}</artifactId>

<version>${spark.version}</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-sql_${scala.version}</artifactId>

<version>${spark.version}</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming_2.11</artifactId>

<version>${spark.version}</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-mllib_2.11</artifactId>

<version>2.1.1</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>

<version>2.3.0</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming-kafka-0-8_${scala.version}</artifactId>

<version>2.3.0</version>

</dependency>

<dependency>

<groupId>net.jpountz.lz4</groupId>

<artifactId>lz4</artifactId>

<version>1.3.0</version>

</dependency>

<dependency>

<groupId>mysql</groupId>

<artifactId>mysql-connector-java</artifactId>

<version>8.0.18</version>

</dependency>

<dependency>

<groupId>org.apache.flume.flume-ng-clients</groupId>

<artifactId>flume-ng-log4jappender</artifactId>

<version>1.7.0</version>

</dependency>

<!-- <dependency>-->

<!-- <groupId>org.apache.spark</groupId>-->

<!-- <artifactId>spark-streaming-flume-sink_2.10</artifactId>-->

<!-- <version>1.5.2</version>-->

<!-- </dependency>-->

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-hive_2.12</artifactId>

<version>2.4.8</version>

</dependency>

</dependencies>

<!-- 配置maven打包插件及打包类型 -->

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-compiler-plugin</artifactId>

<version>3.8.1</version>

<configuration>

<source>1.8</source>

<target>1.8</target>

</configuration>

</plugin>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-assembly-plugin</artifactId>

<configuration>

<descriptorRefs>

<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>

</configuration>

</plugin>

</plugins>

</build>

​

二、解决无法创建scala文件问题

三、编写LoggerLevel特质

在特质 下增加如下代码

Scala 复制代码
Logger.getLogger("org").setLevel(Level.ERROR)

这个时候需要导包

完整代码如下:

Scala 复制代码
import org.apache.log4j.{Level, Logger}



trait LoggerLevel {

Logger.getLogger("org").setLevel(Level.ERROR)

}

四、编写getLocalSparkSession方法

以下是完整代码:

Scala 复制代码
import org.apache.spark.sql.SparkSession



object SparkUnit {

/**

* 一个class参数

**/

def getLocalSparkSession(appName: String): SparkSession = {

SparkSession.builder().appName(appName).master("local[2]").getOrCreate()

}



def getLocalSparkSession(appName: String, support: Boolean): SparkSession = {

if (support) SparkSession.builder().master("local[2]").appName(appName).enableHiveSupport().getOrCreate()

else getLocalSparkSession(appName)

}



def getLocalSparkSession(appName: String, master: String): SparkSession = {

SparkSession.builder().appName(appName).master(master).getOrCreate()

}



def getLocalSparkSession(appName: String, master: String, support: Boolean): SparkSession = {

if (support) SparkSession.builder().appName(appName).master(master).enableHiveSupport().getOrCreate()

else getLocalSparkSession(appName, master)

}



def stopSpark(ss: SparkSession) = {

if (ss != null) {

ss.stop()

}

}



}
相关推荐
喂完待续3 小时前
【Tech Arch】Hive技术解析:大数据仓库的SQL桥梁
大数据·数据仓库·hive·hadoop·sql·apache
SelectDB3 小时前
5000+ 中大型企业首选的 Doris,在稳定性的提升上究竟花了多大的功夫?
大数据·数据库·apache
写bug写bug4 小时前
分布式锁的使用场景和常见实现(下)
分布式·后端·面试
最初的↘那颗心4 小时前
Flink Stream API 源码走读 - window 和 sum
大数据·hadoop·flink·源码·实时计算·窗口函数
Yusei_05236 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch
一只栖枝12 小时前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续16 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交16 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
还是大剑师兰特1 天前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
yh云想1 天前
《从入门到精通:Kafka核心原理全解析》
分布式·kafka