Hadoop3教程(七):MapReduce概述

文章目录

(68) MR的概述&优缺点

MapReduce是一个分布式运算程序的编程框架,简单的说,就是一个 分布式计算框架,是Hadoop的核心所在。

MR的核心功能,是将用户编写的业务逻辑代码和自身组件相融合,整合成一个完整的分布式运算程序,并发运行在Hadoop集群上。

优点:

  • 易于编程。用户只关心业务逻辑就可以;
  • 良好的扩展性。可动态增加服务器节点,以解决计算资源不足的问题;
  • 高容错性。如果有一台节点崩溃,不会影响整个集群的计算。其他可用节点会接过崩溃节点的任务,继续计算。
  • 适合海量数据的计算。这里的海量,一般是指TB以上级别的。

缺点:

  • 不擅长实时计算。无法达到mysql这种毫秒级查询,无法快速响应;
  • 不擅长流式计算。指数据一条条过来,实时的流式计算。一般是spark streaming和flink适合做这个。MR的特性决定了其数据源必须是静态的。
  • 不擅长DAG有向无环图 。像是迭代计算,即DAG中,任务一的输出会作为任务二的输入,任务二的输出则会作为任务三的输入,以此类推,是一个链式的结构。MR不擅长处理这种,当然,只是不擅长,不是不支持。相比来讲,spark更适合用来处理这种任务。( 因为spark的中间结果是基于内存的,而MR是基于磁盘,重复IO性能太低下 )

(69)MR的核心思想

经典案例:统计一段话中每个单词出现的总次数,其中a~p的结果放在一个文件,q~z的结果放在一个文件里。

MR的计算分为两个阶段:Map阶段和Reduce阶段。

接下来我们以经典案例,来讲解MR的主要工作流程,如图:

1) Map阶段,是任务分配阶段,一般是按照块大小,每个MapTask负责处理一块数据。这个块一般是128M。

这个阶段的MapTask并发实例,完全并发运行,互不相干。

在我们刚说的这个案例里,MapTask中都做了些什么呢?

  • 一行一行读数据,进行处理;
  • 按照空格分割行内单词;
  • 把切出来的单词,组成KV键值对(单词,1)
  • 将所有的KV键值对,按照单词首字母,分成两个分区(ap分区和qz分区),导出至磁盘保存。

2) Reduce阶段,就是任务汇总统计阶段。

这一阶段的ReduceTask并发实例也是互不相干,但是它们依赖于Map阶段所有MapTask并发实例的输出。

在这个案例里,因为结果需要有2个文件,所以这里会有2个ReduceTask,一个负责汇总出ap,一个负责汇总出qz,并分别输出至文件。

在一个MR计算过程中,只能包含一个Map阶段和一个Reduce阶段。如果用户的业务逻辑过于复杂,那么可以创建多个MR计算程序,串行计算。这就相当于链式的有向无环图计算了。

一些问题细节:

  • MapTask内部是如何工作的?
  • ReduceTask内部是如何工作的?
  • MapTask内部是如何排序、控制分区的?
  • MapTask和ReduceTask之间是如何衔接的?

这些问题都将在后面一一解答。

MapReduce进程

一个完整的MR程序在分布式运行的时候,会产生三种类型的进程:

  • MrAppMaster:是ApplicationMaster的子进程,负责整个Mr程序的过程调度及状态协调;
  • MapTask:负责Map阶段的数据处理流程;
  • ReduceTask:负责Reduce阶段的数据处理流程

MapTask和ReduceTask似乎都是yarnchild,这里仅供参考一下。

(70)官方WC源码&序列化类型

WordCount(即WC),这是Hadoop里一个很经典的MR案例,教程后面很多地方在讲解底层原理的时候都会以WC为例做讲解。

官方WordCount的源码在哪儿呢?

大概在Hadoop安装目录的share/hadoop/mapreduce/hadoop-mapreduce-example-xxx.jar,这里面存储了Hadoop的一些代码案例。

jar包反编译工具:jd-gui。

WC的源码里,核心是三个类:

  • 主类,负责调度/驱动
  • TokenizerMapper类,继承了Mapper
  • IntSumReducer类,继承了Reducer

分工很明确。

另外,这里简单介绍下hadoop中常用的数据序列化类型,后面讲序列化的时候会用到:

Java类型 Hadoop Writable类型
Boolean BooleanWritable
Byte ByteWritable
Int IntWritable
Float FloatWritable
Long LongWritable
Double DoubleWritable
String Text
Map MapWritable
Array ArrayWritable
Null NullWritable

(71)MR的编程规范

用户在编写一个完整的MR程序时,需要实现3个部分,即Mapper、Reducer和Driver。

Mapper

Mapper阶段:

  • 用户自定义的Mapper,要继承对应的系统Mapper类;
  • Mapper的输入数据需要是KV键值对的形式;
  • Mapper中的业务逻辑,需要写在Mapper类里声明的map()方法里;
  • Mapper的输出数据,也需要是KV对的形式;
  • map()方法对每一个KV对,都调用一次;(每个KV都会跑一遍属于自己的map()方法)

Reducer

Reducer阶段:

  • 用户自定义的Reducer,要继承对应的系统Reducer类;
  • Reducer的输入类型跟Mapper的输出类型是要保持一致的。这个很好理解,串行的毕竟;
  • Reducer的业务逻辑,需要写在Reducer类里声明的reduce()方法里;
  • 在ReduceTask进程中,reduce()对==每一组相同K==的KV对,都调用一次;(所以这里容易发生数据倾斜)

注意,最后一条,Mapper跟Reducer是不一样的。Reducer是每一组相同K的KV对,进一个reduce()。

这个其实很好理解,Reducer阶段就是做汇总的,它是一个数据量减少的过程,其实就是一个把n条具有相同特征的数据,合并成一条数据的过程。

以WC举例,第一句话里字母a出现了3次,第二句话里字母a出现了4次,即mapper会分别输出两个键值对,即(a,3)和(a,4),Reducer则会将这两个键值对输入同一个reduce()进行加和,并最终输出(a,7)。

Driver

Driver阶段:

相当于yarn集群的客户端,用于提交整个程序到YARN集群,具体提交的是什么呢?其实是封装了MR程序相关运行参数的一个job对象。所以驱动类里其实就是定义一些运行参数之类的。

(72)WordCount案例需求分析

一个标准的WordCount需求:统计给定的文本文件中,每一个单词出现的次数。

我们需要针对这个需求,编写对应的Mapper、Reducer和Driver。

这里就不展示代码了,只是展示一下各个类的主要功能。

Mapper负责:

  • 将MapTask传过来的文本内容先转换成string;
  • 根据空格将这一行切分成单词;
  • 将切出来的单词,包装成键值对<单词,1>的形式;

Reducer负责:

  • 将相同K的value值加在一起;
  • 输出该K的总次数;

Driver阶段:

  • 获取配置信息,获取job对象实例;
  • 指定本程序的jar包所在的本地路径;
  • 关联Mapper和Reducer业务类;
  • 指定Mapper的输出类型(K和V是什么类型);
  • 指定最终输出的类型。(整个MR程序结束后的输出,而不是Reducer阶段的输出)
  • 指定job的输入文件的所在目录;
  • 指定job的输出结果的所在目录(输出目录不能提前存在?);
  • 提交作业;

参考文献

  1. 【尚硅谷大数据Hadoop教程,hadoop3.x搭建到集群调优,百万播放】
相关推荐
zmd-zk37 分钟前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶39 分钟前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic
测试界的酸菜鱼1 小时前
Python 大数据展示屏实例
大数据·开发语言·python
时差9531 小时前
【面试题】Hive 查询:如何查找用户连续三天登录的记录
大数据·数据库·hive·sql·面试·database
Mephisto.java1 小时前
【大数据学习 | kafka高级部分】kafka中的选举机制
大数据·学习·kafka
苍老流年1 小时前
Hive中各种Join的实现
数据仓库·hive·hadoop
Mephisto.java1 小时前
【大数据学习 | kafka高级部分】kafka的优化参数整理
大数据·sql·oracle·kafka·json·database
道可云1 小时前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
成都古河云1 小时前
智慧场馆:安全、节能与智能化管理的未来
大数据·运维·人工智能·安全·智慧城市
软工菜鸡1 小时前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert