04 MIT线性代数-矩阵的LU分解 Factorization into A=LU

目的: 从矩阵的角度理解高斯消元法, 完成LU 分解得到A =LU

1.矩阵乘积的逆矩阵 Inverse of a product

2.矩阵乘积的转置 Transpose of a product

3.转置矩阵的逆矩阵 Inverse of a transpose

4.矩阵的LU分解

U 为上三角阵(Upper triangular matrix), L 为下三角阵(Lower triangular matrix), 通过分解得到对角阵D(diagonal matrix)

4.1 三阶矩阵不需要换行进行消元的情况则有: (no row exchanges)

设定一组消元矩阵,其中E31 为单位阵I,其它两个消元矩阵如下:

row3 -5newrow2 =row3 -5(row2 -2row1 )=row3 -5row2 +10row1

E(left of A) EA=U

4.2 inverses (reverse order)

右侧操作则不会有这种情况发生,运算顺序会发生变化

E(left of U) A=LU

if no row exchanges, multipliers go directly into L 没有多余的交叉项出现是LU 分解要优于EA =U这种形式的原因之一

5. How many operations on n×n matrix A? 消元法所需运算量

6. 置换矩阵Permutation Matrix

如果主元的位置出现了0,就需要进行"行交换"。我们可以通过左乘一个置换矩阵(Permutation Matrix)实现"行交换"的操作. 置换矩阵每一行或者每一列只有一个元素是1,其它都是0

为了实现33矩阵的第一行与第二行的交换, 有6个置换矩阵

nxn矩阵存在着++n!++个置换矩阵

置换矩阵的逆矩阵

某阶的置换矩阵集合而言,置换矩阵的两两乘积仍在这个集合中,置换矩阵的逆矩阵也在此集合中。置换矩阵的逆矩阵即为它的转置

相关推荐
无风听海3 小时前
神经网络之正交矩阵
人工智能·神经网络·矩阵
巴里巴气12 小时前
第73题 矩阵置零
线性代数·算法·矩阵
短视频矩阵源码定制1 天前
矩阵系统软件哪家好?2025年选型指南与深度品牌剖析
线性代数·矩阵
云茧1 天前
【数学基础(二)】向量、矩阵、行列式与线性变换
线性代数·矩阵
无风听海1 天前
神经网络之PPMI矩阵
人工智能·神经网络·矩阵
短视频矩阵源码定制2 天前
矩阵系统源码推荐:技术架构与功能完备性深度解析
java·人工智能·矩阵·架构
AI Chen2 天前
【矩阵分析与应用】【第5章 梯度分析与最优化】【5.2.2 矩阵迹的微分计算示例d(tr(U))=tr(dU)证明】
矩阵·
短视频矩阵源码定制2 天前
矩阵系统全面解析:构建智能营销体系的核心引擎
java·人工智能·矩阵·aigc·视频
知识搬运工人3 天前
传统卷积神经网络中的核心运算是卷积或者矩阵乘,请问transformer模型架构主要的计算
矩阵·cnn·transformer
前端炒粉4 天前
18.矩阵置零(原地算法)
javascript·线性代数·算法·矩阵