04 MIT线性代数-矩阵的LU分解 Factorization into A=LU

目的: 从矩阵的角度理解高斯消元法, 完成LU 分解得到A =LU

1.矩阵乘积的逆矩阵 Inverse of a product

2.矩阵乘积的转置 Transpose of a product

3.转置矩阵的逆矩阵 Inverse of a transpose

4.矩阵的LU分解

U 为上三角阵(Upper triangular matrix), L 为下三角阵(Lower triangular matrix), 通过分解得到对角阵D(diagonal matrix)

4.1 三阶矩阵不需要换行进行消元的情况则有: (no row exchanges)

设定一组消元矩阵,其中E31 为单位阵I,其它两个消元矩阵如下:

row3 -5newrow2 =row3 -5(row2 -2row1 )=row3 -5row2 +10row1

E(left of A) EA=U

4.2 inverses (reverse order)

右侧操作则不会有这种情况发生,运算顺序会发生变化

E(left of U) A=LU

if no row exchanges, multipliers go directly into L 没有多余的交叉项出现是LU 分解要优于EA =U这种形式的原因之一

5. How many operations on n×n matrix A? 消元法所需运算量

6. 置换矩阵Permutation Matrix

如果主元的位置出现了0,就需要进行"行交换"。我们可以通过左乘一个置换矩阵(Permutation Matrix)实现"行交换"的操作. 置换矩阵每一行或者每一列只有一个元素是1,其它都是0

为了实现33矩阵的第一行与第二行的交换, 有6个置换矩阵

nxn矩阵存在着++n!++个置换矩阵

置换矩阵的逆矩阵

某阶的置换矩阵集合而言,置换矩阵的两两乘积仍在这个集合中,置换矩阵的逆矩阵也在此集合中。置换矩阵的逆矩阵即为它的转置

相关推荐
咚咚王者44 分钟前
人工智能之数学基础 线性代数:第三章 特征值与特征向量
人工智能·线性代数·机器学习
Tipriest_13 小时前
旋转矩阵与欧拉角转换数学公式与代码详解
线性代数·矩阵
十子木13 小时前
布林克曼方程和Darcy方程的区别
线性代数·矩阵·学习方法
测试人社区-小明14 小时前
智能测试误报问题的深度解析与应对策略
人工智能·opencv·线性代数·微服务·矩阵·架构·数据挖掘
Tipriest_18 小时前
旋转矩阵,齐次变换矩阵,欧拉角,四元数等相互转换的常用代码C++ Python
c++·python·矩阵
小李小李快乐不已20 小时前
数组&&矩阵理论基础
数据结构·c++·线性代数·算法·leetcode·矩阵
wa的一声哭了21 小时前
拉格朗日插值
人工智能·线性代数·算法·机器学习·计算机视觉·自然语言处理·矩阵
启明真纳1 天前
矩阵”到底是什么
线性代数·矩阵
图先1 天前
线性代数第二讲—矩阵
线性代数
图先1 天前
线性代数第六讲——二次型
线性代数