04 MIT线性代数-矩阵的LU分解 Factorization into A=LU

目的: 从矩阵的角度理解高斯消元法, 完成LU 分解得到A =LU

1.矩阵乘积的逆矩阵 Inverse of a product

2.矩阵乘积的转置 Transpose of a product

3.转置矩阵的逆矩阵 Inverse of a transpose

4.矩阵的LU分解

U 为上三角阵(Upper triangular matrix), L 为下三角阵(Lower triangular matrix), 通过分解得到对角阵D(diagonal matrix)

4.1 三阶矩阵不需要换行进行消元的情况则有: (no row exchanges)

设定一组消元矩阵,其中E31 为单位阵I,其它两个消元矩阵如下:

row3 -5newrow2 =row3 -5(row2 -2row1 )=row3 -5row2 +10row1

E(left of A) EA=U

4.2 inverses (reverse order)

右侧操作则不会有这种情况发生,运算顺序会发生变化

E(left of U) A=LU

if no row exchanges, multipliers go directly into L 没有多余的交叉项出现是LU 分解要优于EA =U这种形式的原因之一

5. How many operations on n×n matrix A? 消元法所需运算量

6. 置换矩阵Permutation Matrix

如果主元的位置出现了0,就需要进行"行交换"。我们可以通过左乘一个置换矩阵(Permutation Matrix)实现"行交换"的操作. 置换矩阵每一行或者每一列只有一个元素是1,其它都是0

为了实现33矩阵的第一行与第二行的交换, 有6个置换矩阵

nxn矩阵存在着++n!++个置换矩阵

置换矩阵的逆矩阵

某阶的置换矩阵集合而言,置换矩阵的两两乘积仍在这个集合中,置换矩阵的逆矩阵也在此集合中。置换矩阵的逆矩阵即为它的转置

相关推荐
太妃糖耶12 小时前
URP-利用矩阵在Shader中实现物体的平移和缩放
unity·矩阵
优美的赫蒂1 天前
理解欧拉公式
线性代数·算法·数学建模
岩中竹1 天前
力扣热题100题解(c++)—矩阵
数据结构·c++·程序人生·算法·leetcode·矩阵
byxdaz1 天前
矩阵运算和线性代数操作开源库
矩阵
User_芊芊君子1 天前
【C语言经典算法实战】:从“移动距离”问题看矩阵坐标计算
c语言·算法·矩阵
weixin_428498491 天前
使用HYPRE库并行装配IJ稀疏矩阵
线性代数·矩阵
THe CHallEnge of THe BrAve2 天前
工业相机中CCM使能参数-色彩校正矩阵
数码相机·线性代数·矩阵
小美爱刷题2 天前
力扣DAY63-67 | 热100 | 二分:搜索插入位置、搜索二维矩阵、排序数组查找元素、搜索旋转排序数组、搜索最小值
算法·leetcode·矩阵
NorthFish北海有鱼2 天前
python三维矩阵的维度
python·矩阵·numpy
该怎么办呢3 天前
webgl入门实例-11模型矩阵 (Model Matrix)基本概念
线性代数·矩阵·webgl