04 MIT线性代数-矩阵的LU分解 Factorization into A=LU

目的: 从矩阵的角度理解高斯消元法, 完成LU 分解得到A =LU

1.矩阵乘积的逆矩阵 Inverse of a product

2.矩阵乘积的转置 Transpose of a product

3.转置矩阵的逆矩阵 Inverse of a transpose

4.矩阵的LU分解

U 为上三角阵(Upper triangular matrix), L 为下三角阵(Lower triangular matrix), 通过分解得到对角阵D(diagonal matrix)

4.1 三阶矩阵不需要换行进行消元的情况则有: (no row exchanges)

设定一组消元矩阵,其中E31 为单位阵I,其它两个消元矩阵如下:

row3 -5newrow2 =row3 -5(row2 -2row1 )=row3 -5row2 +10row1

E(left of A) EA=U

4.2 inverses (reverse order)

右侧操作则不会有这种情况发生,运算顺序会发生变化

E(left of U) A=LU

if no row exchanges, multipliers go directly into L 没有多余的交叉项出现是LU 分解要优于EA =U这种形式的原因之一

5. How many operations on n×n matrix A? 消元法所需运算量

6. 置换矩阵Permutation Matrix

如果主元的位置出现了0,就需要进行"行交换"。我们可以通过左乘一个置换矩阵(Permutation Matrix)实现"行交换"的操作. 置换矩阵每一行或者每一列只有一个元素是1,其它都是0

为了实现33矩阵的第一行与第二行的交换, 有6个置换矩阵

nxn矩阵存在着++n!++个置换矩阵

置换矩阵的逆矩阵

某阶的置换矩阵集合而言,置换矩阵的两两乘积仍在这个集合中,置换矩阵的逆矩阵也在此集合中。置换矩阵的逆矩阵即为它的转置

相关推荐
来点光吧1 小时前
齐次变换矩阵运算
线性代数·矩阵
劈星斩月4 小时前
线性代数-3Blue1Brown《线性代数的本质》行列式(7)
线性代数·行列式
咚咚王者1 天前
人工智能之数学基础 线性代数:第一章 向量与矩阵
人工智能·线性代数·矩阵
ACERT3332 天前
04矩阵理论复习-矩阵的分解
算法·矩阵
ACERT3332 天前
03矩阵理论复习-内积空间和正规矩阵
算法·矩阵
simon_skywalker2 天前
线性代数及其应用习题答案(中文版)第二章 矩阵代数 2.3 可逆矩阵的特征(2)
线性代数·矩阵
simon_skywalker2 天前
线性代数及其应用习题答案(中文版)第二章 矩阵代数 2.4 分块矩阵(1)
线性代数·矩阵
simon_skywalker2 天前
线性代数及其应用习题答案(中文版)第二章 矩阵代数 2.3 可逆矩阵的特征(1)
线性代数
黑色的山岗在沉睡2 天前
滤波算法数学前置——线性化
线性代数·算法
千天夜2 天前
线性代数核心概念:正定矩阵、合同矩阵与正交矩阵
线性代数·矩阵