论文阅读-多目标强化学习-envelope MOQ-learning

introduction

一种多目标强化学习算法,来自2019 Nips《A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation》

总体思想

待补充

算法

虽然论文中用的是Q-learning的架构,但是在提供的代码中,采用的是A3C的架构,使用envelope 网络作为价值网络,估计状态价值用于更新,所以接下来以代码为准,结合论文思想,展示用到的输入、输出和损失函数。

输入

以多目标马里奥环境为例,输入为连续四帧状态 S,随机采样的偏好w。w的值均为正数,且和为1,每一位的值,代表对该维目标的偏好大小。

输出

损失函数

critic loss

复制代码
        mse = nn.MSELoss()
        critic_loss_l1 = mse(wvalue, wtarget)
        critic_loss_l2 = mse(value.view(-1), target_batch.view(-1))
        loss += 0.5 * (self.beta * critic_loss_l1 + (1-self.beta) * critic_loss_l2)

Critic 网络的损失由critic loss1和critic loss2加权和组成,critic loss2 理解为多目标损失函数,即当Critic网络能够准确评估多目标状态时,所有pareto前沿上的点都满足critic loss2 为零。因此用梯度下降优化CL2显得不平滑且困难(因为它的解不止一个,而是很多个)。所以引入critic loss1 来减少这种不平滑,critic loss 1 是某种偏好下,critic网络的TD LOSS,因为偏好确定了,所以解只有一个,作者认为这样的损失函数更容易优化,更平滑。

操作上,wvalue和wtarget的唯独都是(batch_size, 1) ; 而 value和target的维度都是(batch_size,reward_size)。显然也是前者的优化更简单。

Actor loss

复制代码
wadv_batch = torch.bmm(adv_batch.unsqueeze(1), 
                               w_batch.unsqueeze(2)).squeeze()
actor_loss = -m.log_prob(action_batch) * wadv_batch

actor loss形式上和带基线的policy gradient的损失函数类似,只不过Critic网络输出的维度不是1而是reward_size,优势adv先与偏好权重w矩阵相乘,得到维度为1的优势adv后再输入actor loss中,这也说明actor loss 的优化方向是朝着使得当前偏好的期望回报最大的方向优化的。

损失函数中偏好和输入网络偏好的关系

从伪代码,和代码中可见,在进行前向推导时输入网络的preference 和在训练时使用的preference并不是同一个。并且,前向时所用的preference并没有被replayer buffer记录下来。训练时actor 和 critic里用的偏好仍然是随机抽取的偏好。

相关推荐
有Li20 小时前
用于CBCT到CT合成的纹理保留扩散模型/文献速递-基于人工智能的医学影像技术
论文阅读·人工智能·深度学习·计算机视觉·文献
CV-杨帆1 天前
论文阅读:arixv 2026 Reasoning Models Generate Societies of Thought
论文阅读
YMWM_1 天前
论文阅读“MV-UMI: A Scalable Multi-View Interface for Cross-Embodiment Learning“
论文阅读·umi
YMWM_2 天前
论文阅读“Tactile-reactive gripper with an active palm for dexterous manipulation“
论文阅读·palm·tactile gripper
CV-杨帆2 天前
论文阅读:2026 techrxiv Jailbreak-as-a-Service: The Emerging Threat Landscape
论文阅读
张较瘦_3 天前
[论文阅读] 软件测试 | 跨语言模糊测试大揭秘:C++/Rust/Python谁更胜一筹?
c++·论文阅读·rust
青衫码上行3 天前
Redis常用数据类型操作命令
java·数据库·论文阅读·redis·学习
蓝田生玉1234 天前
qwen论文阅读笔记
论文阅读·笔记
YMWM_4 天前
论文阅读“Thinker: A vision-language foundation model for embodied intelligence“
论文阅读·vla
Eastmount4 天前
[论文阅读] (48)TIFS24 基于注意力的恶意软件API定位技术
论文阅读·系统安全·恶意代码分析·恶意代码定位·tifs