0基础学习PyFlink——模拟Hadoop流程

学习大数据还是绕不开始祖级别的技术hadoop。我们不用了解其太多,只要理解其大体流程,然后用python代码模拟主要流程来熟悉其思想。

还是以单词统计为例,如果使用hadoop流程实现,则如下图。

为什么要搞这么复杂呢?

顾名思义,"大数据"意味着庞大的数据量需要计算。提升计算效率的方法无非如下:

  • 更高效的算法
  • 更高频率的处理器
  • 更多的可并行执行的流程
  • 更多的处理器

"更多的可并行执行的流程"意味着不同计算流程之间数据不存在前后依赖,这个也是GPU计算的基础。在这个前提下,我们又有足够多的处理器,则可以提升计算的并行度,大大缩短计算的时间。

沿着这个思路,我们该怎么做呢?

  1. 切分原始数据到符合计算的最小单元。
  2. 组合最小计算单元为可并行处理的数据单元。
  3. 执行并行计算。

以上图所表达的数据为例。

我们有一个一维数组,元素分别是"A C B","A E B"和"E C D"。

我们可以把它分成三个独立的数组


这三个独立的数组可以再切分,这个切分可以并行执行,因为每组的切分和其他组没有任何关系。

\[A,C,B

A,E,B

E,C,D

]

作为一种通用的框架,需要协调好内部数据之间传输的格式。MapReduce正如其名,选择了Map结构来存储中间数据。如下图,切分后的字母为Key,Value是1(可以是个随意值)。

如上图,Map操作包括了Splitting和Mapping,它们将原始数据处理成若干个最小计算单元,且这个单元是内部通用结构map。

Mapping完的结构不适合高效的并行计算,因为数据存在关联关系。比如我们计算A的个数,则需要同时依赖第一组和第二组数据,没办法最大并行优化。

为了增加后续计算的可并行性,Reduce操作将这些最小计算单元归类(Shuffling&Sorting )。这个归类的过程的输入是一个个map,输出还是map。再次呼应了MapReduce的名字。

现在每组数据可以被独立分配到一个处理器上去计算了,因为它不依赖任何其他数据。比如计算A的个数,我们只要让一个处理器关注第一条数据,其他条数据根本不用关心。

最后的Reducing再将上述数据并行计算,它的输入和输出还是map,再次呼应MapReduce的名称。

基于上面的拆解,我们使用python实现逻辑如下。需要注意的是,在流程中,我们传递的都是dict结构(map,即key value对)。

python 复制代码
input = [
    "A C B",
    "A E B",
    "E C D",
]

def split_map_shuffle_reduce(input):
    # splitting
    wordsSplitMap = {}
    for (i, line) in zip(range(len(input)), input):
        wordsSplitMap[i] = line.split()
    # {0: ['A', 'C', 'B'], 1: ['A', 'E', 'B'], 2: ['E', 'C', 'D']}
        
    # mapping
    words = {}
    for (i, wordsOneline) in zip(range(len(wordsSplitMap.values())), wordsSplitMap.values()):
        words[i] = map(lambda word: (word,1), wordsOneline)
    # {0: {'A': 1,'C': 1, 'B': 1}, 1: {'A': 1,'E': 1, 'B': 1}, 2: {'E': 1,'C': 1, 'D': 1}}
        
    # shuffling
    shuffle_sort_words = {}
    for wordmap in words.values():
        for word in wordmap:
            shuffle_sort_words.setdefault(word[0], []).append(word[1])
    # {'A': [1, 1], 'C': [1, 1], 'B': [1, 1], 'E': [1, 1], 'D': [1]}
        
    # reducing
    wordCount = {}
    for word, count in shuffle_sort_words.items():
        wordCount.update({word: sum(count)})
    # {'A': 2, 'C': 2, 'B': 2, 'E': 2, 'D': 1}
    
    return wordCount

output = split_map_shuffle_reduce(input)
print(output)

{'A': 2, 'C': 2, 'B': 2, 'E': 2, 'D': 1}

参考资料

相关推荐
青春不朽51220 分钟前
Scrapy框架入门指南
python·scrapy
MZ_ZXD00144 分钟前
springboot旅游信息管理系统-计算机毕业设计源码21675
java·c++·vue.js·spring boot·python·django·php
qq_12498707531 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
全栈老石1 小时前
Python 异步生存手册:给被 JS async/await 宠坏的全栈工程师
后端·python
Hello.Reader1 小时前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink
梨落秋霜1 小时前
Python入门篇【模块/包】
python
Hello.Reader2 小时前
Flink 对接 Google Cloud Storage(GCS)读写、Checkpoint、插件安装与生产配置指南
大数据·flink
Hello.Reader3 小时前
Flink Kubernetes HA(高可用)实战原理、前置条件、配置项与数据保留机制
贪心算法·flink·kubernetes
阔皮大师3 小时前
INote轻量文本编辑器
java·javascript·python·c#
小法师爱分享3 小时前
StickyNotes,简单便签超实用
java·python