SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions

本文是LLM系列文章,针对《SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions》的翻译。

自我指导:将语言模型与自生成的指令相结合

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 来自GPT3的自学数据](#3 来自GPT3的自学数据)
  • [4 实验结果](#4 实验结果)
  • [5 相关工作](#5 相关工作)
  • [6 结论](#6 结论)

摘要

大型"指令调整"语言模型(即,微调以响应指令)已经证明了将零样本推广到新任务的显著能力。然而,它们在很大程度上依赖于人类书面指令数据,而这些数据在数量、多样性和创造性方面往往是有限的,因此阻碍了调优模型的通用性。我们介绍了SELFINSTRUCT,这是一个通过自举自己的生成来提高预训练语言模型的指令跟随能力的框架。我们的管道从语言模型中生成指令、输入和输出样本,然后过滤无效或类似的样本,然后使用它们来微调原始模型。将我们的方法应用于普通的GPT3,我们证明了在SUPERNATURALINSTRUCTIONS上比原始模型有33%的绝对改进,与使用私人用户数据和人工注释训练的InstructionGPT001的性能相当。为了进一步评估,我们为新任务策划了一组专家书面指令,并通过人工评估表明,使用SELF-instruction调整GPT3的性能大大优于使用现有公共指令数据集,仅与InstructionGPT001相差5%的绝对差距。SELF-instruction提供了一种几乎无注释的方法,用于将预训练的语言模型与指令对齐,我们发布了我们的大型合成数据集,以促进未来对指令调整的研究

1 引言

2 方法

3 来自GPT3的自学数据

4 实验结果

5 相关工作

6 结论

我们介绍了SELF-instruction,这是一种通过LMs自己生成指令数据来提高其指令跟随能力的方法。在对普通GPT3进行实验时,我们为不同的任务自动构建了一个由52K指令组成的大规模数据集,并在此数据上微调GPT3,使SUPERNI比原始GPT3有33%的绝对改进。此外,我们还为新颖的任务策划了一套专家书面说明。对该集的人工评估表明,使用SELF-instruction调优GPT3的性能大大优于使用现有公共指令数据集,并且与InstructionGPT001的性能非常接近。我们希望"自我指导"可以作为调整预训练的LMs以遵循人类指令的第一步,未来的工作可以建立在这些数据的基础上,以改进指令遵循模型。

相关推荐
得贤招聘官4 分钟前
告别“感觉选人”:AI重构招聘的效率、精准与体验闭环
人工智能·重构
Jerryhut5 分钟前
Opencv总结2——图像金字塔与轮廓检测
人工智能·opencv·计算机视觉
数字孪生家族6 分钟前
视频+数字孪生技术在隧道智慧综合管控平台中的典型应用
人工智能·视频孪生技术·智慧隧道建设·数字孪生交通·空间智能应用
dulu~dulu10 分钟前
机器学习题目总结(二)
人工智能·机器学习·支持向量机·聚类·集成学习·降维·贝叶斯分类器
咬人喵喵19 分钟前
神经网络:教电脑像人脑一样思考
人工智能·深度学习·神经网络
古城小栈19 分钟前
Spring Boot 3.3 整合 AI 工具链:自动生成接口文档
人工智能·spring boot·后端
翔云 OCR API20 分钟前
文档识别接口:赋能企业高效办公与加速信息的数字化转型
开发语言·人工智能·python·计算机视觉·ocr·语音识别
Mintopia20 分钟前
🌐 长期视角:WebAIGC 技术的社会价值边界与伦理底线
前端·人工智能·aigc
Mintopia22 分钟前
🧩 为 AI 提供专业可信的工具,实现“思路猜想”
人工智能·llm·aigc
neardi临滴科技26 分钟前
Neardi Pi 4-3588:开启 8K 极速智能,赋能企业级边缘计算新时代
人工智能·嵌入式硬件·边缘计算·rk3588·开发板