数据挖掘原理与算法

一、什么是闭合项集? Close算法对Apriori算法的改进在什么地方?

闭合项集 :就是指一个项集x,它的直接超集的支持度计数都不等于它本身的支持度计数。
改进的地方

改进方向:

加速频繁项目集合的生成,减少数据库库的扫描次数。

close算法改进基于的基本原理:

一个频繁闭合项目集的所有闭合子集一定是频繁的;一个非频繁闭合项目集的所有闭合超集一定是非频繁的。

二、Fp-tree是如何压缩数据库的?建立下表的条件模式库,并挖掘频繁模式。Min_ sup=3.关联规则的种类有哪些?举例说明。

解题思路:
1、建立项头表

我们第一次扫描数据,得到所有频繁一项集的计数。然后删除支持低于阈值的项,将1项频繁集放入项头表,并按照支持度降序排列。接着第二次也是最后一次扫描数据,将读到的原始数据剔除非频繁1项集,并按照支持度降序排列。

2、将原始数据进行排序
3、FP Tree的建立

有了项头表和排序后的数据集,我们就可以开始FP树的建立了。开始FP树没有数据,建立FP树时我们一条条的读入排序后的数据集,插入FP树,插入时按照排序后的顺序,插入FP树中,排序靠前的节点是祖先节点,靠后的是子孙节点。如果有共用的祖先,则对应的共用祖先节点计数加1。插入后,如果有新节点出现,则项头表的节点会通过节点链表链接上新节点。知道所有的数据都插入到FP树后。FP树建立完成

4、FP Tree的挖掘

得到了FP树和项头表以及节点链表,我们首先要从项头表的底部项依次向上挖掘。对于项头表对应于FP树的每一项,我们要找到它的条件模式基。所谓条件模式基是以我们要挖掘的节点作为叶子节点所对应的FP子树。得到这个FP子树,我们将子树中每个节点的的计数设置为叶子节点的计数,并删除计数低于支持度的节点。从这个条件模式基,我们就可以递归挖掘得到频繁项集了。

5、FP Tree算法归纳

1)扫描数据,得到所有频繁一项集的的计数。然后删除支持度低于阈值的项,将1项频繁集放入项头表,并按照支持度降序排列。

2)扫描数据,将读到的原始数据剔除非频繁1项集,并按照支持度降序排列。

3)读入排序后的数据集,插入FP树,插入时按照排序后的顺序,插入FP树中,排序靠前的节点是祖先节点,而靠后的是子孙节点。如果有共用的祖先,则对应的公用祖先节点计数加1。插入后,如果有新节点出现,则项头表对应的节点会通过节点链表链接上新节点。直到所有的数据都插入到FP树后,FP树的建立完成。

4)从项头表的底部项依次向上找到项头表项对应的条件模式基。从条件模式基递归挖掘得到项头表项项的频繁项集(可以参见第4节对F的条件模式基的频繁二项集到频繁5五项集的挖掘)。

5)如果不限制频繁项集的项数,则返回步骤4所有的频繁项集,否则只返回满足项数要求的频繁项集。

相关推荐
ysa0510305 分钟前
竞赛常用加速技巧#模板
c++·笔记·算法
7 978 分钟前
C语言基础知识--文件的顺序读写与随机读写
java·数据结构·算法
2401_841003988 分钟前
Kubernetes 资源管理全解析
算法·贪心算法
☆璇1 小时前
【数据结构】排序
c语言·开发语言·数据结构·算法·排序算法
ATM0061 小时前
人机协作系列(四)AI编程的下一个范式革命——看Factory AI如何重构软件工程?
人工智能·大模型·agent·人机协作·人机协同
读创商闻2 小时前
极狐GitLab CEO 柳钢——极狐 GitLab 打造中国企业专属 AI 编程平台,引领编程新潮流
人工智能·gitlab
kailp2 小时前
语言模型玩转3D生成:LLaMA-Mesh开源项目
人工智能·3d·ai·语言模型·llama·gpu算力
marteker2 小时前
弗兰肯斯坦式的人工智能与GTM策略的崩溃
人工智能·搜索引擎
无心水2 小时前
大语言模型零样本情感分析实战:无需机器学习训练,96%准确率实现指南
人工智能·机器学习·语言模型
来自于狂人2 小时前
AI大模型训练的云原生实践:如何用Kubernetes指挥千卡集群?
人工智能·云原生·kubernetes