2、Kafka 生产者

3.1 生产者消息发送流程

3.1.1 发送原理

在消息发送的过程中,涉及到了两个线程------main 线程和 Sender 线程。在 main 线程

中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator,

Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。

3.1.2 生产者重要参数列表

3.2 异步发送 API

3.2.1 普通异步发送

1)需求:创建 Kafka 生产者,采用异步的方式发送到 Kafka Broker

2)代码编写

(1)创建工程 kafka

(2)导入依赖

java 复制代码
<dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>3.0.0</version>
 </dependency>
</dependencies>

(3)创建包名:com.atguigu.kafka.producer

(4)编写不带回调函数的 API 代码

java 复制代码
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducer {
 public static void main(String[] args) throws 
InterruptedException {
 // 1. 创建 kafka 生产者的配置对象
 Properties properties = new Properties();
 // 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
 properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, 
"hadoop102:9092");
 
 // key,value 序列化(必须):key.serializer,value.serializer
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
"org.apache.kafka.common.serialization.StringSerializer");
 
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
"org.apache.kafka.common.serialization.StringSerializer");
 // 3. 创建 kafka 生产者对象
 KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);
 // 4. 调用 send 方法,发送消息
 for (int i = 0; i < 5; i++) {
 kafkaProducer.send(new 
ProducerRecord<>("first","atguigu " + i));
 }
 // 5. 关闭资源
 kafkaProducer.close();
 }
}

测试:

①在 hadoop102 上开启 Kafka 消费者。

java 复制代码
[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息

java 复制代码
[hadoop102 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first
atguigu 0
atguigu 1
atguigu 2
atguigu 3
atguigu 4

3.2.2 带回调函数的异步发送

回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元

数据信息(RecordMetadata)和异常信息(Exception),如果 Exception 为 null,说明消息发

送成功,如果 Exception 不为 null,说明消息发送失败。

注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。

java 复制代码
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallback {
 public static void main(String[] args) throws 
InterruptedException {
 // 1. 创建 kafka 生产者的配置对象
 Properties properties = new Properties();
 // 2. 给 kafka 配置对象添加配置信息
 properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, 
"hadoop102:9092");
 // key,value 序列化(必须):key.serializer,value.serializer
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 // 3. 创建 kafka 生产者对象
 KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);
 // 4. 调用 send 方法,发送消息
 for (int i = 0; i < 5; i++) {
 // 添加回调
 kafkaProducer.send(new ProducerRecord<>("first", 
"prince " + i), new Callback() {
// 该方法在 Producer 收到 ack 时调用,为异步调用
 @Override
 public void onCompletion(RecordMetadata metadata, 
Exception exception) {
 if (exception == null) {
 // 没有异常,输出信息到控制台
 System.out.println(" 主题: " + 
metadata.topic() + "->" + "分区:" + metadata.partition());
 } else {
 // 出现异常打印
 exception.printStackTrace();
 }
 }
 });
 // 延迟一会会看到数据发往不同分区
 Thread.sleep(2);
 }
 // 5. 关闭资源
 kafkaProducer.close();
 }
}

测试:

①在 hadoop102 上开启 Kafka 消费者。

java 复制代码
[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

java 复制代码
[hadoop102 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first
prince 0
prince 1
prince 2
prince 3
prince 4

③在 IDEA 控制台观察回调信息。

java 复制代码
主题:first->分区:0
主题:first->分区:0
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1

3.3 同步发送 API

只需在异步发送的基础上,再调用一下 get()方法即可。

java 复制代码
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
public class CustomProducerSync {
 public static void main(String[] args) throws
InterruptedException, ExecutionException {
 // 1. 创建 kafka 生产者的配置对象
 Properties properties = new Properties();
 // 2. 给 kafka 配置对象添加配置信息
 
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102
:9092");
 // key,value 序列化(必须):key.serializer,value.serializer
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 // 3. 创建 kafka 生产者对象
 KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);
// 4. 调用 send 方法,发送消息
 for (int i = 0; i < 10; i++) {
 // 异步发送 默认
// kafkaProducer.send(new 
ProducerRecord<>("first","kafka" + i));
 // 同步发送
 kafkaProducer.send(new 
ProducerRecord<>("first","kafka" + i)).get();
 }
 // 5. 关闭资源
 kafkaProducer.close();
 }
}

测试:

①在 hadoop102 上开启 Kafka 消费者。

java 复制代码
[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

java 复制代码
[hadoop102 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first
atguigu 0
atguigu 1
atguigu 2
atguigu 3
atguigu 4

3.4 生产者分区

3.4.1 分区好处

3.4.2 生产者发送消息的分区策略

1)默认的分区器 DefaultPartitioner

在 IDEA 中 ctrl +n,全局查找 DefaultPartitioner。

java 复制代码
/**
* The default partitioning strategy:
* <ul>
* <li>If a partition is specified in the record, use it
* <li>If no partition is specified but a key is present choose a 
partition based on a hash of the key
* <li>If no partition or key is present choose the sticky 
partition that changes when the batch is full.
* 
* See KIP-480 for details about sticky partitioning.
*/
public class DefaultPartitioner implements Partitioner {
 ... ...
}

2)案例一

将数据发往指定 partition 的情况下,例如,将所有数据发往分区 1 中。

java 复制代码
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallbackPartitions {
 public static void main(String[] args) {
 // 1. 创建 kafka 生产者的配置对象
 Properties properties = new Properties();
 // 2. 给 kafka 配置对象添加配置信息
 
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102
:9092");
 // key,value 序列化(必须):key.serializer,value.serializer
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<>(properties);
 for (int i = 0; i < 5; i++) {
 // 指定数据发送到 1 号分区,key 为空(IDEA 中 ctrl + p 查看参数)
 kafkaProducer.send(new ProducerRecord<>("first", 
1,"","prince " + i), new Callback() {
 @Override
 public void onCompletion(RecordMetadata metadata, 
Exception e) {
 if (e == null){
 System.out.println(" 主题: " + 
metadata.topic() + "->" + "分区:" + metadata.partition()
 );
 }else {
 e.printStackTrace();
 }
 }
 });
 }
 kafkaProducer.close();
 }
}

测试:

①在 hadoop102 上开启 Kafka 消费者。

java 复制代码
[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

java 复制代码
[hadoop102 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first
prince 0
prince 1
prince 2
prince 3
prince 4

③在 IDEA 控制台观察回调信息。

java 复制代码
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1

3)案例二

没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取

余得到 partition 值。

java 复制代码
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallback {
 public static void main(String[] args) {
 Properties properties = new Properties();
 
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102
:9092");
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<>(properties);
 for (int i = 0; i < 5; i++) {
 // 依次指定 key 值为 a,b,f ,数据 key 的 hash 值与 3 个分区求余,
分别发往 1、2、0
 kafkaProducer.send(new ProducerRecord<>("first", 
"a","prince " + i), new Callback() {
 @Override
 public void onCompletion(RecordMetadata metadata, 
Exception e) {
 if (e == null){
 System.out.println(" 主题: " + 
metadata.topic() + "->" + "分区:" + metadata.partition()
 );
 }else {
 e.printStackTrace();
 }
 }
 });
 }
 kafkaProducer.close();
 }
}

测试:

①key="a"时,在控制台查看结果。

java 复制代码
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1

②key="b"时,在控制台查看结果。

java 复制代码
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2

③key="f"时,在控制台查看结果。

java 复制代码
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0

3.4.3 自定义分区器

如果研发人员可以根据企业需求,自己重新实现分区器。

1)需求

例如我们实现一个分区器实现,发送过来的数据中如果包含 atguigu,就发往 0 号分区,

不包含 atguigu,就发往 1 号分区。

2)实现步骤

(1)定义类实现 Partitioner 接口。

(2)重写 partition()方法。

java 复制代码
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import java.util.Map;
/**
* 1. 实现接口 Partitioner
* 2. 实现 3 个方法:partition,close,configure
* 3. 编写 partition 方法,返回分区号
*/
public class MyPartitioner implements Partitioner {
 /
 * 返回信息对应的分区
 * @param topic 主题
 * @param key 消息的 key
 * @param keyBytes 消息的 key 序列化后的字节数组
 * @param value 消息的 value
 * @param valueBytes 消息的 value 序列化后的字节数组
 * @param cluster 集群元数据可以查看分区信息
 * @return
 */
 @Override
 public int partition(String topic, Object key, byte[] 
keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
 // 获取消息
 String msgValue = value.toString();
 // 创建 partition
 int partition;
 // 判断消息是否包含 atguigu
 if (msgValue.contains("atguigu")){
 partition = 0;
 }else {
 partition = 1;
 }
 // 返回分区号
 return partition;
 }
 // 关闭资源
 @Override
 public void close() {
 }
 // 配置方法
 @Override
 public void configure(Map<String, ?> configs) {
 }
}

(3)使用分区器的方法,在生产者的配置中添加分区器参数。

java 复制代码
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallbackPartitions {
 public static void main(String[] args) throws 
InterruptedException {
Properties properties = new Properties();
 
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102
:9092");
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 // 添加自定义分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.atgui
gu.kafka.producer.MyPartitioner");
 KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<>(properties);
 for (int i = 0; i < 5; i++) {
 
 kafkaProducer.send(new ProducerRecord<>("first", 
"prince " + i), new Callback() {
 @Override
 public void onCompletion(RecordMetadata metadata, 
Exception e) {
 if (e == null){
 System.out.println(" 主题: " + 
metadata.topic() + "->" + "分区:" + metadata.partition()
 );
 }else {
 e.printStackTrace();
 }
 }
 });
 }
 kafkaProducer.close();
 }
}

(4)测试

①在 hadoop102 上开启 Kafka 消费者。

java 复制代码
[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 控制台观察回调信息。

java 复制代码
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0

3.5 生产经验------生产者如何提高吞吐量

java 复制代码
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducerParameters {
 public static void main(String[] args) throws 
InterruptedException {
 // 1. 创建 kafka 生产者的配置对象
 Properties properties = new Properties();
 // 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
 properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, 
"hadoop102:9092");
 
 // key,value 序列化(必须):key.serializer,value.serializer
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
"org.apache.kafka.common.serialization.StringSerializer");
 
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
"org.apache.kafka.common.serialization.StringSerializer");
 // batch.size:批次大小,默认 16K
 properties.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
 // linger.ms:等待时间,默认 0
 properties.put(ProducerConfig.LINGER_MS_CONFIG, 1);
 // RecordAccumulator:缓冲区大小,默认 32M:buffer.memory
 properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG,
 33554432);
 // compression.type:压缩,默认 none,可配置值 gzip、snappy、
lz4 和 zstd
properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"snappy");
 // 3. 创建 kafka 生产者对象
 KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);
 // 4. 调用 send 方法,发送消息
 for (int i = 0; i < 5; i++) {
 kafkaProducer.send(new 
ProducerRecord<>("first","prince " + i));
 }
 // 5. 关闭资源
 kafkaProducer.close();
 }
} 

测试

①在 hadoop102 上开启 Kafka 消费者。

java 复制代码
[hadoop103 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

java 复制代码
[hadoop102 kafka]$ bin/kafka-console-consumer.sh --
bootstrap-server hadoop102:9092 --topic first
prince 0
prince 1
prince 2
prince 3
prince 4

3.6 生产经验------数据可靠性

1)ack 应答原理


2)代码配置

java 复制代码
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducerAck {
 public static void main(String[] args) throws 
InterruptedException {
 // 1. 创建 kafka 生产者的配置对象
 Properties properties = new Properties();
 // 2. 给 kafka 配置对象添加配置信息:bootstrap.servers
 102:9092");
 
 // key,value 序列化(必须):key.serializer,value.serializer
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
 
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 // 设置 acks
 properties.put(ProducerConfig.ACKS_CONFIG, "all");
 // 重试次数 retries,默认是 int 最大值,2147483647
 properties.put(ProducerConfig.RETRIES_CONFIG, 3);
 // 3. 创建 kafka 生产者对象
 KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);
 // 4. 调用 send 方法,发送消息
 for (int i = 0; i < 5; i++) {
 kafkaProducer.send(new 
ProducerRecord<>("first","prince " + i));
 }
 // 5. 关闭资源
 kafkaProducer.close();
 }
}

3.7 生产经验------数据去重

3.7.1 数据传递语义

3.7.2 幂等性

1)幂等性原理

2)如何使用幂等性

开启参数 enable.idempotence 默认为 true,false 关闭。

3.7.3 生产者事务

1)Kafka 事务原理

2)Kafka 的事务一共有如下 5 个 API

java 复制代码
// 1 初始化事务
void initTransactions();
// 2 开启事务
void beginTransaction() throws ProducerFencedException;
// 3 在事务内提交已经消费的偏移量(主要用于消费者)
void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets,
 String consumerGroupId) throws 
ProducerFencedException;
// 4 提交事务
void commitTransaction() throws ProducerFencedException;
// 5 放弃事务(类似于回滚事务的操作)
void abortTransaction() throws ProducerFencedException;

3)单个 Producer,使用事务保证消息的仅一次发送

java 复制代码
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducerTransactions {
 public static void main(String[] args) throws 
InterruptedException {
 // 1. 创建 kafka 生产者的配置对象
 Properties properties = new Properties();
 // 2. 给 kafka 配置对象添加配置信息
 properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
 "hadoop102:9092");
 // key,value 序列化
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
StringSerializer.class.getName());
 // 设置事务 id(必须),事务 id 任意起名
 properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG, 
"transaction_id_0");
 // 3. 创建 kafka 生产者对象
 KafkaProducer<String, String> kafkaProducer = new 
KafkaProducer<String, String>(properties);
 // 初始化事务
 kafkaProducer.initTransactions();
 // 开启事务
 kafkaProducer.beginTransaction();
 try {
 // 4. 调用 send 方法,发送消息
 for (int i = 0; i < 5; i++) {
 // 发送消息
 kafkaProducer.send(new ProducerRecord<>("first", 
"prince " + i));
 }
// int i = 1 / 0;
 // 提交事务
 kafkaProducer.commitTransaction();
 } catch (Exception e) {
 // 终止事务
 kafkaProducer.abortTransaction();
 } finally {
 // 5. 关闭资源
 kafkaProducer.close();
 }
 }
}

3.8 生产经验------数据有序

3.9 生产经验------数据乱序

相关推荐
材料苦逼不会梦到计算机白富美1 小时前
golang分布式缓存项目 Day 1
分布式·缓存·golang
想进大厂的小王1 小时前
项目架构介绍以及Spring cloud、redis、mq 等组件的基本认识
redis·分布式·后端·spring cloud·微服务·架构
Java 第一深情1 小时前
高性能分布式缓存Redis-数据管理与性能提升之道
redis·分布式·缓存
杨荧2 小时前
【JAVA毕业设计】基于Vue和SpringBoot的服装商城系统学科竞赛管理系统
java·开发语言·vue.js·spring boot·spring cloud·java-ee·kafka
ZHOU西口3 小时前
微服务实战系列之玩转Docker(十八)
分布式·docker·云原生·架构·数据安全·etcd·rbac
zmd-zk3 小时前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶3 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic
筱源源3 小时前
Kafka-linux环境部署
linux·kafka
Mephisto.java3 小时前
【大数据学习 | kafka高级部分】kafka中的选举机制
大数据·学习·kafka
Mephisto.java4 小时前
【大数据学习 | kafka高级部分】kafka的优化参数整理
大数据·sql·oracle·kafka·json·database