LeetCode 2894. 分类求和并作差【数学,容斥原理】1140

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

给你两个正整数 nm

现定义两个整数 num1num2 ,如下所示:

  • num1:范围 [1, n] 内所有 无法被 m 整除 的整数之和。
  • num2:范围 [1, n] 内所有 能够被 m 整除 的整数之和。

返回整数 num1 - num2

示例 1:

js 复制代码
输入:n = 10, m = 3
输出:19
解释:在这个示例中:
- 范围 [1, 10] 内无法被 3 整除的整数为 [1,2,4,5,7,8,10] ,num1 = 这些整数之和 = 37 。
- 范围 [1, 10] 内能够被 3 整除的整数为 [3,6,9] ,num2 = 这些整数之和 = 18 。
返回 37 - 18 = 19 作为答案。

示例 2:

js 复制代码
输入:n = 5, m = 6
输出:15
解释:在这个示例中:
- 范围 [1, 5] 内无法被 6 整除的整数为 [1,2,3,4,5] ,num1 = 这些整数之和 =  15 。
- 范围 [1, 5] 内能够被 6 整除的整数为 [] ,num2 = 这些整数之和 = 0 。
返回 15 - 0 = 15 作为答案。

示例 3:

js 复制代码
输入:n = 5, m = 1
输出:-15
解释:在这个示例中:
- 范围 [1, 5] 内无法被 1 整除的整数为 [] ,num1 = 这些整数之和 = 0 。 
- 范围 [1, 5] 内能够被 1 整除的整数为 [1,2,3,4,5] ,num2 = 这些整数之和 = 15 。
返回 0 - 15 = -15 作为答案。

提示:

  • 1 <= n, m <= 1000

解法 容斥原理

设 k = ⌊ n m ⌋ k = \left\lfloor\dfrac{n}{m}\right\rfloor k=⌊mn⌋ 。 num 2 \textit{num}_2 num2 是 [ 1 , n ] [1,n] [1,n] 内的 m m m 的倍数之和,即
m + 2 m + ⋯ + k m = ( 1 + 2 + ⋯ + k ) ⋅ m = k ( k + 1 ) 2 ⋅ m \begin{aligned} &m + 2m + \cdots + km\\ =\ & (1+2+\cdots+k)\cdot m\\ =\ & \dfrac{k(k+1)}{2}\cdot m \end{aligned} = = m+2m+⋯+km(1+2+⋯+k)⋅m2k(k+1)⋅m
num 1 \textit{num}_1 num1 相当于 ( 1 + 2 + ⋯ + n ) − num 2 (1+2+\cdots+n) - \textit{num}_2 (1+2+⋯+n)−num2

​所以
num 1 − num 2 = ( 1 + 2 + ⋯ + n ) − num 2 ⋅ 2 = n ( n + 1 ) 2 − k ( k + 1 ) m \begin{aligned} &\textit{num}_1 - \textit{num}_2\\ =\ & (1+2+\cdots+n) - \textit{num}_2 \cdot 2\\ =\ & \dfrac{n(n+1)}{2} - k(k+1)m \end{aligned} = = num1−num2(1+2+⋯+n)−num2⋅22n(n+1)−k(k+1)m

cpp 复制代码
class Solution {
public:
    int differenceOfSums(int n, int m) {
        return n * (n + 1) / 2 - n / m * (n / m + 1) * m;
    }
};

复杂度分析:

  • 时间复杂度: O ( 1 ) \mathcal{O}(1) O(1) 。
  • 空间复杂度: O ( 1 ) \mathcal{O}(1) O(1) 。
相关推荐
go546315846523 分钟前
修改Spatial-MLLM项目,使其专注于无人机航拍视频的空间理解
人工智能·算法·机器学习·架构·音视频·无人机
油泼辣子多加40 分钟前
【Torch】nn.BatchNorm1d算法详解
算法
nlog3n40 分钟前
基于 govaluate 的监控系统中,如何设计灵活可扩展的自定义表达式函数体系
算法·go
IT古董1 小时前
【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(2)神经网络整体结构
pytorch·神经网络·算法
ThetaarSofVenice1 小时前
垃圾收集相关算法Test
java·jvm·算法
小陈phd1 小时前
langchain从入门到精通(二十八)——RAG优化策略(六)集成多种检索器算法实现混合检索及问题转换总结
算法
是小王同学啊~1 小时前
(LangChain)RAG系统链路向量检索器之Retrievers(五)
python·算法·langchain
薰衣草23332 小时前
一天两道力扣(1)
算法·leetcode·职场和发展
一粒沙白猫2 小时前
Java综合练习04
java·开发语言·算法
爱coding的橙子2 小时前
每日算法刷题Day41 6.28:leetcode前缀和2道题,用时1h20min(要加快)
算法·leetcode·职场和发展