ubuntu18.04 RTX3060 rangnet++训练 bonnetal语义分割

代码链接: https://github.com/PRBonn/lidar-bonnetal

安装anaconda环境为

CUDA 11.0(11.1也可以)

anaconda环境如下

c 复制代码
numpy==1.17.2 
torchvision==0.2.2
matplotlib==2.2.3
tensorflow==1.13.1
scipy==0.19.1
pytorch==1.7.1
vispy==0.5.3
opencv_python==4.1.0.25
opencv_contrib_python==4.1.0.25
Pillow==6.1.0
PyYAML==5.1.1

修改anaconda,换源

c 复制代码
gedit ~/.condarc 

更换文件信息

c 复制代码
channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - defaults
show_channel_urls: true
default_channels:
  - http://mirrors.aliyun.com/anaconda/pkgs/main
  - http://mirrors.aliyun.com/anaconda/pkgs/r
  - http://mirrors.aliyun.com/anaconda/pkgs/msys2
custom_channels:
  conda-forge: http://mirrors.aliyun.com/anaconda/cloud
  msys2: http://mirrors.aliyun.com/anaconda/cloud
  bioconda: http://mirrors.aliyun.com/anaconda/cloud
  menpo: http://mirrors.aliyun.com/anaconda/cloud
  pytorch: http://mirrors.aliyun.com/anaconda/cloud
  simpleitk: http://mirrors.aliyun.com/anaconda/cloud

安装指令

c 复制代码
conda install numpy==1.17.2   Pillow==6.1.0 PyYAML==5.1.1 matplotlib==2.2.3 vispy==0.5.3

其中pytorch、torchvision、torchaudio、一起安装。指令如下

c 复制代码
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

安装和查看python opencv版本 指令

c 复制代码
pip install opencv-python==4.1.0.25
pip install opencv-contrib-python==4.1.0.25

python
import cv2
cv2.__version__
或者
conda list

下载数据集链接

官方地址:http://www.semantic-kitti.org/dataset.html#overview

其中80G激光雷达数据的链接:https://pan.baidu.com/s/1OjoWrwE8xIrCmYO2hujJNw 提取码:6381

标签数据在官方地址第三个的179M。

参考博客:https://blog.csdn.net/BIT_HXZ/article/details/123539476

将80G的激光雷达数据文件和标签文件放在一起,(只取前10个数据)如下图所示



运行训练指令如下

c 复制代码
cd xx/xx/xx/semantic
mkdir log
./train.py -d dataset/ -ac config/arch/darknet21.yaml -l log

运行可能有bug,修改文件 lidar-bonnetal-master/train/tasks/semantic/dataset/kitti/parser.py

将unproj_xyz[:unproj_n_points] = torch.from_numpy(scan.points)

改为unproj_xyz[:unproj_n_points] = torch.Tensor(scan.points)

有好几处

torch.from_numpy改为torch.Tensor

相关推荐
java1234_小锋14 小时前
TensorFlow2 Python深度学习 - 循环神经网络(SimpleRNN)示例
python·深度学习·tensorflow·tensorflow2
java1234_小锋14 小时前
TensorFlow2 Python深度学习 - 通俗理解池化层,卷积层以及全连接层
python·深度学习·tensorflow·tensorflow2
Psycho_MrZhang15 小时前
自定义层和读写文件
pytorch·python·深度学习
哥布林学者16 小时前
吴恩达深度学习课程一:神经网络和深度学习 第三周:浅层神经网络(三)
深度学习·ai
MIXLLRED16 小时前
YOLO学习——训练进阶和预测评价指标
深度学习·学习·yolo
Scc_hy17 小时前
强化学习_Paper_2000_Eligibility Traces for Off-Policy Policy Evaluation
人工智能·深度学习·算法·强化学习·rl
来酱何人17 小时前
低资源NLP数据处理:少样本/零样本场景下数据增强与迁移学习结合方案
人工智能·深度学习·分类·nlp·bert
王彦臻17 小时前
YOLOv3 技术总结
深度学习·yolo·目标跟踪
CoovallyAIHub18 小时前
Mamba-3震撼登场!Transformer最强挑战者再进化,已进入ICLR 2026盲审
深度学习·算法·计算机视觉
JY1906410618 小时前
从点云到模型,徕卡RTC360如何搞定铝单板测量?
深度学习