ubuntu18.04 RTX3060 rangnet++训练 bonnetal语义分割

代码链接: https://github.com/PRBonn/lidar-bonnetal

安装anaconda环境为

CUDA 11.0(11.1也可以)

anaconda环境如下

c 复制代码
numpy==1.17.2 
torchvision==0.2.2
matplotlib==2.2.3
tensorflow==1.13.1
scipy==0.19.1
pytorch==1.7.1
vispy==0.5.3
opencv_python==4.1.0.25
opencv_contrib_python==4.1.0.25
Pillow==6.1.0
PyYAML==5.1.1

修改anaconda,换源

c 复制代码
gedit ~/.condarc 

更换文件信息

c 复制代码
channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - defaults
show_channel_urls: true
default_channels:
  - http://mirrors.aliyun.com/anaconda/pkgs/main
  - http://mirrors.aliyun.com/anaconda/pkgs/r
  - http://mirrors.aliyun.com/anaconda/pkgs/msys2
custom_channels:
  conda-forge: http://mirrors.aliyun.com/anaconda/cloud
  msys2: http://mirrors.aliyun.com/anaconda/cloud
  bioconda: http://mirrors.aliyun.com/anaconda/cloud
  menpo: http://mirrors.aliyun.com/anaconda/cloud
  pytorch: http://mirrors.aliyun.com/anaconda/cloud
  simpleitk: http://mirrors.aliyun.com/anaconda/cloud

安装指令

c 复制代码
conda install numpy==1.17.2   Pillow==6.1.0 PyYAML==5.1.1 matplotlib==2.2.3 vispy==0.5.3

其中pytorch、torchvision、torchaudio、一起安装。指令如下

c 复制代码
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

安装和查看python opencv版本 指令

c 复制代码
pip install opencv-python==4.1.0.25
pip install opencv-contrib-python==4.1.0.25

python
import cv2
cv2.__version__
或者
conda list

下载数据集链接

官方地址:http://www.semantic-kitti.org/dataset.html#overview

其中80G激光雷达数据的链接:https://pan.baidu.com/s/1OjoWrwE8xIrCmYO2hujJNw 提取码:6381

标签数据在官方地址第三个的179M。

参考博客:https://blog.csdn.net/BIT_HXZ/article/details/123539476

将80G的激光雷达数据文件和标签文件放在一起,(只取前10个数据)如下图所示



运行训练指令如下

c 复制代码
cd xx/xx/xx/semantic
mkdir log
./train.py -d dataset/ -ac config/arch/darknet21.yaml -l log

运行可能有bug,修改文件 lidar-bonnetal-master/train/tasks/semantic/dataset/kitti/parser.py

将unproj_xyz[:unproj_n_points] = torch.from_numpy(scan.points)

改为unproj_xyz[:unproj_n_points] = torch.Tensor(scan.points)

有好几处

torch.from_numpy改为torch.Tensor

相关推荐
老艾的AI世界4 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
sp_fyf_20248 小时前
【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
CoderIsArt8 小时前
基于 BP 神经网络整定的 PID 控制
人工智能·深度学习·神经网络
z千鑫8 小时前
【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南
人工智能·pytorch·深度学习·aigc·tensorflow·keras·codemoss
EterNity_TiMe_8 小时前
【论文复现】神经网络的公式推导与代码实现
人工智能·python·深度学习·神经网络·数据分析·特征分析
思通数科多模态大模型9 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
数据岛9 小时前
数据集论文:面向深度学习的土地利用场景分类与变化检测
人工智能·深度学习
学不会lostfound10 小时前
三、计算机视觉_05MTCNN人脸检测
pytorch·深度学习·计算机视觉·mtcnn·p-net·r-net·o-net
红色的山茶花10 小时前
YOLOv8-ultralytics-8.2.103部分代码阅读笔记-block.py
笔记·深度学习·yolo
白光白光10 小时前
凸函数与深度学习调参
人工智能·深度学习