ubuntu18.04 RTX3060 rangnet++训练 bonnetal语义分割

代码链接: https://github.com/PRBonn/lidar-bonnetal

安装anaconda环境为

CUDA 11.0(11.1也可以)

anaconda环境如下

c 复制代码
numpy==1.17.2 
torchvision==0.2.2
matplotlib==2.2.3
tensorflow==1.13.1
scipy==0.19.1
pytorch==1.7.1
vispy==0.5.3
opencv_python==4.1.0.25
opencv_contrib_python==4.1.0.25
Pillow==6.1.0
PyYAML==5.1.1

修改anaconda,换源

c 复制代码
gedit ~/.condarc 

更换文件信息

c 复制代码
channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - defaults
show_channel_urls: true
default_channels:
  - http://mirrors.aliyun.com/anaconda/pkgs/main
  - http://mirrors.aliyun.com/anaconda/pkgs/r
  - http://mirrors.aliyun.com/anaconda/pkgs/msys2
custom_channels:
  conda-forge: http://mirrors.aliyun.com/anaconda/cloud
  msys2: http://mirrors.aliyun.com/anaconda/cloud
  bioconda: http://mirrors.aliyun.com/anaconda/cloud
  menpo: http://mirrors.aliyun.com/anaconda/cloud
  pytorch: http://mirrors.aliyun.com/anaconda/cloud
  simpleitk: http://mirrors.aliyun.com/anaconda/cloud

安装指令

c 复制代码
conda install numpy==1.17.2   Pillow==6.1.0 PyYAML==5.1.1 matplotlib==2.2.3 vispy==0.5.3

其中pytorch、torchvision、torchaudio、一起安装。指令如下

c 复制代码
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

安装和查看python opencv版本 指令

c 复制代码
pip install opencv-python==4.1.0.25
pip install opencv-contrib-python==4.1.0.25

python
import cv2
cv2.__version__
或者
conda list

下载数据集链接

官方地址:http://www.semantic-kitti.org/dataset.html#overview

其中80G激光雷达数据的链接:https://pan.baidu.com/s/1OjoWrwE8xIrCmYO2hujJNw 提取码:6381

标签数据在官方地址第三个的179M。

参考博客:https://blog.csdn.net/BIT_HXZ/article/details/123539476

将80G的激光雷达数据文件和标签文件放在一起,(只取前10个数据)如下图所示



运行训练指令如下

c 复制代码
cd xx/xx/xx/semantic
mkdir log
./train.py -d dataset/ -ac config/arch/darknet21.yaml -l log

运行可能有bug,修改文件 lidar-bonnetal-master/train/tasks/semantic/dataset/kitti/parser.py

将unproj_xyz[:unproj_n_points] = torch.from_numpy(scan.points)

改为unproj_xyz[:unproj_n_points] = torch.Tensor(scan.points)

有好几处

torch.from_numpy改为torch.Tensor

相关推荐
程序员:钧念6 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
哥布林学者9 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(二)词嵌入模型原理
深度学习·ai
AI街潜水的八角13 小时前
深度学习烟叶病害分割系统3:含训练测试代码、数据集和GUI交互界面
人工智能·深度学习
AI街潜水的八角13 小时前
深度学习烟叶病害分割系统1:数据集说明(含下载链接)
人工智能·深度学习
weixin_4469340313 小时前
统计学中“in sample test”与“out of sample”有何区别?
人工智能·python·深度学习·机器学习·计算机视觉
莫非王土也非王臣13 小时前
循环神经网络
人工智能·rnn·深度学习
Lips61113 小时前
第五章 神经网络(含反向传播计算)
人工智能·深度学习·神经网络
猫天意14 小时前
【深度学习小课堂】| torch | 升维打击还是原位拼接?深度解码 PyTorch 中 stack 与 cat 的几何奥义
开发语言·人工智能·pytorch·深度学习·神经网络·yolo·机器学习
wuk99815 小时前
基于遗传算法优化BP神经网络实现非线性函数拟合
人工智能·深度学习·神经网络
白日做梦Q15 小时前
深度学习中的正则化技术全景:从Dropout到权重衰减的优化逻辑
人工智能·深度学习