huggingface 模型推理几个重要到类

pipeline

它可以让您方便地使用预训练的模型进行各种任务¹。当您用pipeline函数创建一个图像分割的pipeline时,它会自动加载和初始化 一个SegformerForSemanticSegmentation的实例并且封装了一些预处理和后处理的逻辑,例如将图像转换为张量,将输出转换为分割图等²。您可以直接用pipeline函数对图像或图像列表进行分割,而不需要关心模型的细节。

SegformerForSemanticSegmentation

SegformerForSemanticSegmentation是一个具体的模型类,它由一个分层的Transformer编码器和一个轻量级的全MLP解码器组成,可以实现高效的图像分割³。当您用SegformerForSemanticSegmentation.from_pretrained方法加载一个预训练的模型 时,它会返回一个 SegformerForSemanticSegmentation的实例 ,但是您需要自己处理输入和输出的数据格式,例如使用AutoFeatureExtractor来提取图像特征,使用torch.argmax来获取分割结果等。

AutoModel

AutoModel.from_pretrained是一个通用的方法,它可以根据给定的模型名称或路径,自动识别模型的类型 ,并返回一个相应的模型类的实例³。例如,如果给定的模型名称是"bert-base-chinese",那么这个方法会返回一个BertModel的实例,它是一个用于文本表示的模型。这个方法可以处理多种不同类型的模型,但是它不能处理特定任务的模型,例如图像分割或序列标注。

本人实验代码:

复制代码
import cv2
import PIL.Image as Image
import numpy as np
from transformers import pipeline

model_dir = '/speed/speed/code/DECA/face_parsing_model/face-parsing'
image_path = "/speed/speed/code/DECA/TestSamples/examples/6.png"

pipe = pipeline("image-segmentation", model="jonathandinu/face-parsing")
img = Image.open(image_path)
# 加载图片
# img = cv2.imread(image_path)
# 预处理图片
# img = cv2.resize(img, (256, 256))
# img = img.astype(np.float32) / 255.0

# 使用模型分割图片
result = pipe(img)

# Load model directly
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
from transformers import AutoFeatureExtractor, AutoModel
model_dir = '/speed/speed/code/DECA/face_parsing_model/face-parsing'
image_path = "/speed/speed/code/DECA/TestSamples/examples/6.png"

# extractor = AutoFeatureExtractor.from_pretrained("jonathandinu/face-parsing")
# model = SegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing")
extractor = AutoFeatureExtractor.from_pretrained(model_dir)
model = SegformerForSemanticSegmentation.from_pretrained(model_dir)

img = Image.open(image_path)
# 加载图片
img = cv2.imread(image_path)
img = cv2.resize(img, (1024, 1024))

inputs = extractor(img, return_tensors="pt")
outputs = model(**inputs).logits
print('')
相关推荐
熙梦数字化2 小时前
企业资源计划(ERP)系统是什么?有哪些特点?
大数据·人工智能·erp
GISer_Jing3 小时前
SSE Conf大会分享——大模型驱动的智能 可视分析与故事叙述
前端·人工智能·信息可视化
Wai-Ngai3 小时前
自动驾驶控制算法——模型预测控制(MPC)
人工智能·机器学习·自动驾驶
北京耐用通信3 小时前
突破协议壁垒:耐达讯自动化Ethernet/IP转CC-Link网关在工业互联中的核心应用
人工智能·网络协议·安全·自动化·信息与通信
提娜米苏3 小时前
[论文笔记] 基于 LSTM 的端到端视觉语音识别 (End-to-End Visual Speech Recognition with LSTMs)
论文阅读·深度学习·计算机视觉·lstm·语音识别·视觉语音识别
扫描电镜3 小时前
扫描电镜选购指南:智能、稳定与自动化的综合考量
人工智能·自动化·扫描电镜·自动扫描电镜
AI人工智能+3 小时前
炫彩活体检测技术:利用RGB色光序列检测用户面部生物特征反应,能有效识别3D面具、Deepfake等伪造攻击
人工智能·人脸识别·炫彩活体检测
无代码专家3 小时前
数字化转型下的订单管理全流程优化方案
大数据·运维·人工智能
QianCenRealSim3 小时前
FSD入华“加速”中国自动驾驶产业的推动与重构
人工智能·重构·自动驾驶
roman_日积跬步-终至千里3 小时前
【模式识别与机器学习(1+)】基础概念之:机器学习基础
人工智能·机器学习