基于孔雀优化的BP神经网络(分类应用) - 附代码

基于孔雀优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用孔雀算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.孔雀优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 孔雀算法应用

孔雀算法原理请参考:https://blog.csdn.net/u011835903/article/details/127779440

孔雀算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从孔雀算法的收敛曲线可以看到,整体误差是不断下降的,说明孔雀算法起到了优化的作用:



5.Matlab代码

相关推荐
极客代码2 分钟前
【Python TensorFlow】进阶指南(续篇二)
开发语言·人工智能·python·深度学习·tensorflow
池央22 分钟前
丹摩征文活动 | 搭建 CogVideoX-2b详细教程:用短短6秒展现创作魅力
人工智能
QYR市场调研33 分钟前
5G时代的关键元件:射频微波MLCCs市场前景广阔
人工智能
AI小白日记43 分钟前
深入探索AutoDL平台:深度学习GPU算力最佳选择
人工智能·深度学习·gpu算力
一尘之中1 小时前
元宇宙及其技术
人工智能
电子手信1 小时前
AI知识库在行业应用中的未来趋势与案例分析
大数据·人工智能·自然语言处理·数据挖掘
严文文-Chris2 小时前
【卷积神经网络】
人工智能·神经网络·cnn
tang13897644 小时前
机器学习(基础1)
人工智能·算法·机器学习
小于小于大橙子8 小时前
视觉SLAM数学基础
人工智能·数码相机·自动化·自动驾驶·几何学
封步宇AIGC9 小时前
量化交易系统开发-实时行情自动化交易-3.4.2.Okex行情交易数据
人工智能·python·机器学习·数据挖掘