自然语言处理---Transformer机制详解之BERT GPT ELMo模型的对比

1 BERT、GPT、ELMo的不同点

  • 关于特征提取器:

    • ELMo采用两部分双层双向LSTM进行特征提取, 然后再进行特征拼接来融合语义信息.
    • GPT和BERT采用Transformer进行特征提取.
    • 很多NLP任务表明Transformer的特征提取能力强于LSTM, 对于ELMo而言, 采用1层静态token embedding + 2层LSTM, 提取特征的能力有限.
  • 单/双向语言模型:

    • 三者之中, 只有GPT采用单向语言模型, 而ELMo和BERT都采用双向语言模型.
    • ELMo虽然被认为采用了双向语言模型, 但实际上是左右两个单向语言模型分别提取特征, 然后进行特征拼接, 这种融合特征的能力比BERT一体化的融合特征方式弱.
    • 三者之中, 只有ELMo没有采用Transformer. GPT和BERT都源于Transformer架构, GPT的单向语言模型采用了经过修改后的Decoder模块, Decoder采用了look-ahead mask, 只能看到context before上文信息, 未来的信息都被mask掉了. 而BERT的双向语言模型采用了Encoder模块, Encoder只采用了padding mask, 可以同时看到context before上文信息, 以及context after下文信息.

2 BERT、GPT、ELMo的优缺点

ELMo

  • 优点: * 从早期的Word2Vec预训练模型的最大缺点出发, 进行改进, 这一缺点就是无法解决多义词的问题. * ELMo根据上下文动态调整word embedding, 可以解决多义词的问题.
  • 缺点: * ELMo使用LSTM提取特征的能力弱于Transformer. * ELMo使用向量拼接的方式融合上下文特征的能力弱于Transformer.

GPT

  • 优点: * GPT使用了Transformer提取特征, 使得模型能力大幅提升.
  • 缺点: * GPT只使用了单向Decoder, 无法融合未来的信息.

BERT:

  • 优点: * BERT使用了双向Transformer提取特征, 使得模型能力大幅提升. * 添加了两个预训练任务, MLM + NSP的多任务方式进行模型预训练.
  • 缺点: * 模型过于庞大, 参数量太多, 需要的数据和算力要求过高, 训练好的模型应用场景要求高. * 更适合用于语言嵌入表达, 语言理解方面的任务, 不适合用于生成式的任务.

3 小结

学习了BERT, GPT, ELMo之间的区别:

* 三者所选取的特征提取器不同.

* BERT采用的是Transformer架构中的Encoder模块.

* GPT采用的是Transformer架构中的Decoder模块.

* ELMo采用的双层双向LSTM模块.

  • 三者所采用的语言模型单/双向不同.
    • BERT采用的是最彻底的双向语言模型, 可以同时关注context before和context after.
    • GPT采用的是单向语言模型, 即Transformer中的Decoder, 由于采用了mask机制, 所以未来信息context after都不可见.
    • ELMo表面上被认为是双向语言模型, 但实际上是左右两个单向LSTM模型分别提取特征, 在进行简单的拼接融合.
相关推荐
盼小辉丶11 小时前
Transformer实战(21)——文本表示(Text Representation)
人工智能·深度学习·自然语言处理·transformer
艾醒(AiXing-w)11 小时前
大模型面试题剖析:模型微调中冷启动与热启动的概念、阶段与实例解析
人工智能·深度学习·算法·语言模型·自然语言处理
QYR_1112 小时前
2025-2031年全球 MT 插芯市场全景分析报告:技术演进、供需格局与投资前景
人工智能·自然语言处理·机器翻译
paid槮12 小时前
《深度学习》【项目】自然语言处理——情感分析 <上>
深度学习·自然语言处理·easyui
还是大剑师兰特13 小时前
Transformer 面试题及详细答案120道(71-80)-- 应用场景
transformer·大剑师
mmq在路上15 小时前
SLAM-Former: Putting SLAM into One Transformer论文阅读
论文阅读·深度学习·transformer
梦想画家20 小时前
Cohen‘s Kappa系数:衡量分类一致性的黄金标准及其在NLP中的应用
自然语言处理·分类·数据挖掘
金井PRATHAMA1 天前
符号主义对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
liliangcsdn1 天前
从LLM角度学习和了解MoE架构
人工智能·学习·transformer