YOLO V8语义分割模型部署

目录

[1 配置pytorch环境](#1 配置pytorch环境)

[2 配置yolo环境](#2 配置yolo环境)

[3 测试yoloV8的语义分割模型](#3 测试yoloV8的语义分割模型)


1 配置pytorch环境

我的电脑为Y9000P 4090,英伟达显卡驱动版本为525.105.17,驱动显示最高的cuda版本号为12.0,cuda版本为11.6,cudnn版本号为8.5.0。Anaconda3版本为22.9.0。如下:

对于跑yolo来说,我们创建python3.8环境。

复制代码
conda create -n yo python=3.8

启动yo环境:

复制代码
conda activate yo

我的cuda是11.6,安装pytorch1.13.0并用pip加速。

复制代码
pip install torch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/

安装成功,测试cuda是否可用:

复制代码
(yo) liuhongwei@liuhongwei-Legion-Y9000P-IRX8H:~$ python
Python 3.8.18 | packaged by conda-forge | (default, Oct 10 2023, 15:44:36) 
[GCC 12.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cud
torch.cuda                          torch.cudnn_convolution_relu(
torch.cudnn_affine_grid_generator(  torch.cudnn_convolution_transpose(
torch.cudnn_batch_norm(             torch.cudnn_grid_sampler(
torch.cudnn_convolution(            torch.cudnn_is_acceptable(
torch.cudnn_convolution_add_relu(   
>>> torch.cud
torch.cuda                          torch.cudnn_convolution_relu(
torch.cudnn_affine_grid_generator(  torch.cudnn_convolution_transpose(
torch.cudnn_batch_norm(             torch.cudnn_grid_sampler(
torch.cudnn_convolution(            torch.cudnn_is_acceptable(
torch.cudnn_convolution_add_relu(   
>>> torch.cuda.is_available()
True
>>> 

这样就是成功的了。

2 配置yolo环境

yoloV8环境及其好配置,只需输入一行命令即可安装所有所需依赖:

复制代码
pip install ultralytics

安装完成。

从官网下载yolo:

yoloV8官网https://github.com/ultralytics/ultralytics 或者直接克隆到桌面:

复制代码
git clone https://github.com/ultralytics/ultralytics.git

下载预训练模型:在它的官方网站上有用作各种任务的预训练权重。

我们下载目标检测和语义分割权重:

将这些权重放到yoloV8目录下,创建权重文件夹weights,将权重放入其中:

目录结构如下:

至此,我们配置好了yoloV8,开始进行测试。

3 测试yoloV8的语义分割模型

我们在网上随便下载一张图像:

复制代码
yolo task=segment mode=predict model=weights/yolov8s-seg.pt source=0

预测,可能会出错,不用慌,教程没有问题,是你的conda环境有问题,撞库了。

fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))

RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling `cublasSgemm( handle, opa, opb, m, n, k, &alpha, a, lda, b, ldb, &beta, c, ldc)`

解决办法:

清空运行时库缓存:

bash 复制代码
unset LD_LIBRARY_PATH

运行成功,我们把source换成我们自己的图像:

成功

相关推荐
ZCXZ12385296a11 小时前
基于YOLOv26的机器人追踪器检测与跟随系统开发实战
yolo·机器人
前网易架构师-高司机11 小时前
带标注信息的大块煤识别数据集下载,可识别大块煤,支持yolo,coco json,pascal voc xml格式,正确识别率77.6%
yolo·数据集··大块煤
2501_9421917714 小时前
【YOLOv26实战】健身器材物体检测与识别:从模型优化到实际应用
人工智能·yolo·目标跟踪
Faker66363aaa15 小时前
GSM微波天线设备识别与分类_YOLOv26模型实现_1
yolo·分类·数据挖掘
机 _ 长16 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
给算法爸爸上香16 小时前
yolo目标检测线程池高性能视频tensorrt推理(每秒1000+帧)
yolo·目标检测·音视频·线程池·tensorrt
2501_9415079416 小时前
【目标检测改进】基于YOLOv26的公路护栏与灯杆检测识别系统
yolo·目标检测·目标跟踪
2501_9361460417 小时前
生活垃圾智能分类与识别_YOLOv26实现金属玻璃塑料垃圾精确检测_1
yolo·分类·生活
lixzest17 小时前
目标检测算法应用工程师 面试高频题 + 标准答案
python·yolo·目标检测·计算机视觉
机 _ 长18 小时前
YOLO26 蒸馏改进全攻略:从理论到实战 (Response + Feature + Relation)
人工智能·深度学习·yolo·目标检测·计算机视觉