源码解析flink的GenericWriteAheadSink为什么做不到精确一次输出

背景

GenericWriteAheadSink是可以用于几乎是精准一次输出的场景,为什么说是几乎精准一次呢?我们从源码的角度分析一下

GenericWriteAheadSink做不到精准一次输出的原因

首先我们看一下flink检查点完成后通知GenericWriteAheadSink开始进行分段的记录输出并提交事务的代码

java 复制代码
pubblic void notifyCheckpointComplete(long checkpointId) throws Exception {
        super.notifyCheckpointComplete(checkpointId);

        synchronized (pendingCheckpoints) {
            Iterator<PendingCheckpoint> pendingCheckpointIt = pendingCheckpoints.iterator();
            while (pendingCheckpointIt.hasNext()) {

                PendingCheckpoint pendingCheckpoint = pendingCheckpointIt.next();

                long pastCheckpointId = pendingCheckpoint.checkpointId;
                int subtaskId = pendingCheckpoint.subtaskId;
                long timestamp = pendingCheckpoint.timestamp;
                StreamStateHandle streamHandle = pendingCheckpoint.stateHandle;

                if (pastCheckpointId <= checkpointId) {
                    try {
                        if (!committer.isCheckpointCommitted(subtaskId, pastCheckpointId)) {
                            try (FSDataInputStream in = streamHandle.openInputStream()) {
                            //开始把分段记录列表的记录进行输出
                                boolean success =
                                        sendValues(
                                                new ReusingMutableToRegularIteratorWrapper<>(
                                                        new InputViewIterator<>(
                                                                new DataInputViewStreamWrapper(in),
                                                                serializer),
                                                        serializer),
                                                pastCheckpointId,
                                                timestamp);
                                if (success) {
                                   //把分段记录列表输出成功后提交事务
                                    committer.commitCheckpoint(subtaskId, pastCheckpointId);
                                    streamHandle.discardState();
                                    pendingCheckpointIt.remove();
                                }
                            }
                        } else {
                            streamHandle.discardState();
                            pendingCheckpointIt.remove();
                        }
                    } catch (Exception e) {
                        // we have to break here to prevent a new (later) checkpoint
                        // from being committed before this one
                        LOG.error("Could not commit checkpoint.", e);
                        break;
                    }
                }
            }
        }
    }

从上面的源码可以看出,sendValue方法和提交事务commitCheckpoint方法并不能保证原子性,这就意味着如果sendValue执行了一部分或者全部,而提交事务方法commitCheckpoint失败,那么此时这个检查点对应的事务相当于就没有完成,在下一个检查点的通知消息中,会把历史检查点的事务重新sendValue然后进行commit一次,这就意味着相同的记录会执行两次sendValue操作,这就是GenericWriteAheadSink不能保证精准一次的原因

相关推荐
WaaTong8 分钟前
《重学Java设计模式》之 原型模式
java·设计模式·原型模式
m0_743048448 分钟前
初识Java EE和Spring Boot
java·java-ee
AskHarries10 分钟前
Java字节码增强库ByteBuddy
java·后端
小灰灰__30 分钟前
IDEA加载通义灵码插件及使用指南
java·ide·intellij-idea
夜雨翦春韭33 分钟前
Java中的动态代理
java·开发语言·aop·动态代理
Elastic 中国社区官方博客1 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
程序媛小果1 小时前
基于java+SpringBoot+Vue的宠物咖啡馆平台设计与实现
java·vue.js·spring boot
追风林1 小时前
mac m1 docker本地部署canal 监听mysql的binglog日志
java·docker·mac
芒果披萨1 小时前
El表达式和JSTL
java·el
Aloudata2 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路