源码解析flink的GenericWriteAheadSink为什么做不到精确一次输出

背景

GenericWriteAheadSink是可以用于几乎是精准一次输出的场景,为什么说是几乎精准一次呢?我们从源码的角度分析一下

GenericWriteAheadSink做不到精准一次输出的原因

首先我们看一下flink检查点完成后通知GenericWriteAheadSink开始进行分段的记录输出并提交事务的代码

java 复制代码
pubblic void notifyCheckpointComplete(long checkpointId) throws Exception {
        super.notifyCheckpointComplete(checkpointId);

        synchronized (pendingCheckpoints) {
            Iterator<PendingCheckpoint> pendingCheckpointIt = pendingCheckpoints.iterator();
            while (pendingCheckpointIt.hasNext()) {

                PendingCheckpoint pendingCheckpoint = pendingCheckpointIt.next();

                long pastCheckpointId = pendingCheckpoint.checkpointId;
                int subtaskId = pendingCheckpoint.subtaskId;
                long timestamp = pendingCheckpoint.timestamp;
                StreamStateHandle streamHandle = pendingCheckpoint.stateHandle;

                if (pastCheckpointId <= checkpointId) {
                    try {
                        if (!committer.isCheckpointCommitted(subtaskId, pastCheckpointId)) {
                            try (FSDataInputStream in = streamHandle.openInputStream()) {
                            //开始把分段记录列表的记录进行输出
                                boolean success =
                                        sendValues(
                                                new ReusingMutableToRegularIteratorWrapper<>(
                                                        new InputViewIterator<>(
                                                                new DataInputViewStreamWrapper(in),
                                                                serializer),
                                                        serializer),
                                                pastCheckpointId,
                                                timestamp);
                                if (success) {
                                   //把分段记录列表输出成功后提交事务
                                    committer.commitCheckpoint(subtaskId, pastCheckpointId);
                                    streamHandle.discardState();
                                    pendingCheckpointIt.remove();
                                }
                            }
                        } else {
                            streamHandle.discardState();
                            pendingCheckpointIt.remove();
                        }
                    } catch (Exception e) {
                        // we have to break here to prevent a new (later) checkpoint
                        // from being committed before this one
                        LOG.error("Could not commit checkpoint.", e);
                        break;
                    }
                }
            }
        }
    }

从上面的源码可以看出,sendValue方法和提交事务commitCheckpoint方法并不能保证原子性,这就意味着如果sendValue执行了一部分或者全部,而提交事务方法commitCheckpoint失败,那么此时这个检查点对应的事务相当于就没有完成,在下一个检查点的通知消息中,会把历史检查点的事务重新sendValue然后进行commit一次,这就意味着相同的记录会执行两次sendValue操作,这就是GenericWriteAheadSink不能保证精准一次的原因

相关推荐
C***11501 分钟前
Spring TransactionTemplate 深入解析与高级用法
java·数据库·spring
BD_Marathon3 分钟前
SpringBoot——配置文件格式
java·spring boot·后端
indexsunny5 分钟前
互联网大厂Java面试实战:Spring Boot与微服务在电商场景的应用解析
java·spring boot·redis·微服务·kafka·gradle·maven
smileNicky15 分钟前
Lombok @Data 在 IDEA 中运行报错解决方案
java·ide·intellij-idea
计算机学姐15 分钟前
基于SpringBoot的汉服租赁系统【颜色尺码套装+个性化推荐算法+数据可视化统计】
java·vue.js·spring boot·后端·mysql·信息可视化·推荐算法
qq_54702617918 分钟前
Maven 仓库管理
java·maven
天天摸鱼的java工程师20 分钟前
线程池深度解析:核心参数 + 拒绝策略 + 动态调整实战
java·后端
mjhcsp20 分钟前
C++ KMP 算法:原理、实现与应用全解析
java·c++·算法·kmp
邵伯27 分钟前
Java源码中的排序算法(一)--Arrays.sort()
java·排序算法
阿里巴巴P8高级架构师34 分钟前
从0到1:用 Spring Boot 4 + Java 21 打造一个智能AI面试官平台
java·后端