Pytorch与Onnx的转换与推理

Open Neural Network Exchange(ONNX,开放神经网络交换)格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移。

一、pytorch模型保存/加载

有两种方式可用于保存/加载pytorch模型 1)文件中保存模型结构和权重参数 2)文件只保留模型权重.

1、文件中保存模型结构和权重参数

模型保存与调用方式一(只保存权重):

保存:

torch.save(model.state_dict(), mymodel.pth)#只保存模型权重参数,不保存模型结构

调用:

model = My_model(*args, **kwargs)  #这里需要重新创建模型,My_model
model.load_state_dict(torch.load(mymodel.pth))#这里根据模型结构,导入存储的模型参数
model.eval()

模型保存与调用方式二(保存完整模型):

保存:

bash 复制代码
torch.save(model, mymodel.pth)#保存整个model的状态

调用:

bash 复制代码
model=torch.load(mymodel.pth)#这里已经不需要重构模型结构了,直接load就可以
model.eval()

.pt表示pytorch的模型,.onnx表示onnx的模型,后缀名为.pt, .pth, .pkl的pytorch模型文件之间其实没有任何区别

二、pytorch模型转ONNX模型

1、文件中保存模型结构和权重参数

bash 复制代码
import torch
torch_model = torch.load("/home/pytorch/save.pth") # pytorch模型加载

#set the model to inference mode
torch_model.eval()

x = torch.randn(1,3,320,640)        # 生成张量(模型输入格式)
export_onnx_file = "/home/pytorch/test.onnx"   # 目的ONNX文件名

// 导出export:pt->onnx
torch.onnx.export(torch_model,                    # pytorch模型
                    x,                            # 生成张量(模型输入格式)
                    export_onnx_file,            # 目的ONNX文件名
                    do_constant_folding=True,    # 是否执行常量折叠优化
                    input_names=["input"],        # 输入名(可略)
                    output_names=["output"],    # 输出名(可略)
                    dynamic_axes={"input":{0:"batch_size"},        # 批处理变量(可略)
                                    "output":{0:"batch_size"}}) 

注:dynamic_axes字段用于批处理.若不想支持批处理或固定批处理大小,移除dynamic_axes字段即可.

2、文件中只保留模型权重

bash 复制代码
import torch
torch_model = selfmodel()                      # 由研究员提供python.py文件

#set the model to inference mode
torch_model.eval()

x = torch.randn(1,3,320,640)        # 生成张量(模型输入格式)
export_onnx_file = "/home/pytorch/test.onnx"   # 目的ONNX文件名

// 导出export:pt->onnx
torch.onnx.export(torch_model,                    # pytorch模型
                    x,                            # 生成张量(模型输入格式)
                    export_onnx_file,            # 目的ONNX文件名
                    do_constant_folding=True,    # 是否执行常量折叠优化
                    input_names=["input"],        # 输入名(可略)
                    output_names=["output"],    # 输出名(可略)
                    dynamic_axes={"input":{0:"batch_size"},        # 批处理变量(可略)
                                    "output":{0:"batch_size"}}) 

3、onnx文件操作

3.1 安装onnx,onnxruntime:

bash 复制代码
pip install onnx
pip install onnxruntime(只能用cpu)
pip install onnxruntime-gpu(gpu和cpu都能用)

首先要强调的是,有两个版本的onnxruntime,一个叫onnxruntime,只能使用cpu推理,另一个叫onnxruntime-gpu,既可以使用gpu,也可以使用cpu。

如果自己安装的是onnxruntime,需要卸载后安装gpu版本。

确认一下是否可以使用gpu

注意:

```python

print(onnxruntime.get_device())

```

上面的代码给出的输出是'GPU'时,并不代表就成功了。

而要用下面的代码来验证:

```python

ort_session = onnxruntime.InferenceSession("path/model/model_name.onnx",

providers=['CUDAExecutionProvider'])

print(ort_session.get_providers())

```

当输出是:['CUDAExecutionProvider', 'CPUExecutionProvider']才表示成功了。

版本查询:NVIDIA - CUDA | onnxruntime

安装固定版本的onnxruntime:

pip install onnxruntime-gpu==1.9.0

卸载pip uninstall

3.2 加载onnx文件

bash 复制代码
# "加载load"
model=onnx.load('net.onnx')

检查模型格式是否完整及正确

bash 复制代码
onnx.checker.check_model(model)

3.3 打印onnx模型文件信息

bash 复制代码
session=onnxruntime.InferenceSession('net.onnx')
inp=session.get_inputs()[0]


#conv1=session.get_inputs()['conv1']
#out1=session.get_outputs()[1]
out=session.get_provider_options()
#print(inp,conv1,out1)
print(inp)
#print(out)
"打印图信息:字符串信息"
graph=onnx.helper.printable_graph(model.graph)
print(type(graph))

3.4 获取onnx模型输入输出层

bash 复制代码
input=model.graph.input
output = model.graph.output
"""输入输出层"""
print(input,output)

3.5 推理过程

bash 复制代码
import onnx
import onnxruntime
import torch

inputs=torch.randn(1,3,640,320)
#上述inputs仅用于测试使用,用于图片推理,应该换成自己的图片,如:
#img_path='1.jpg'#图片尺寸与onnx模型的处理尺寸保持一致
#img=cv2.imread(img_path)
#inputs=preprocess_imgae(img)#标准化等预处理操作,与源项目代码保持一致即可
#print('inputs.size():',inputs.size())

model=onnx.load('/home/pytorch_DL/test_320_640.onnx')
onnx.checker.check_model(model)
session =onnxruntime.InferenceSession('/home/pytorch_DL/test_320_640.onnx',
providers['CUDAExecutionProvider','CPUExecutionProvider'])
print('session.get_providers():',session.get_providers())
input_name = session.get_inputs()
output_name=session.get_outputs()[0].name
res=session.run([output_name],{input_name[0].name:inputs.numpy()})

参考:Pytorch与Onnx模型的保存、转换与操作_onnx转pytorch_Yuezero_的博客-CSDN博客

pytorch 模型的保存与加载方法以及使用onnx模型部署推理 | 码农家园

onnxruntime使用gpu推理 - 知乎

相关推荐
湫ccc13 分钟前
《Python基础》之基本数据类型
开发语言·python
IT古董13 分钟前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦22 分钟前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw1 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
drebander1 小时前
使用 Java Stream 优雅实现List 转化为Map<key,Map<key,value>>
java·python·list
莫叫石榴姐1 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
威威猫的栗子2 小时前
Python Turtle召唤童年:喜羊羊与灰太狼之懒羊羊绘画
开发语言·python
如若1232 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr2 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner2 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习