python之Cp、Cpk、Pp、Ppk

目录

1、Cp、Cpk、Pp、Ppk

2、python计算


1、Cp、Cpk、Pp、Ppk

Cp= Process Capability Ratio 可被译为"过程能力指数"

Cpk= Process Capability K Ratio 可被译为"过程能力K指数"

Pp= Process Performance Ratio 可被译为"过程绩效指数"

Ppk= Process Performance K Ratio 可被译为"过程绩效K指数"

当 Cpk<1说明制程能力差,不可接受。

1≤Cpk≤1.33,说明制程能力可以,但需改善。

​1.33≤Cpk≤1.67,说明制程能力正常。

过程绩效指数(Pp和Ppk)是过程的过去或现实;而过程能力指数(Cp和Cpk)是过程的潜能或将来。过程能力指数的计算必须满足"过程稳定"和"数据正态分布"两个必要条件;而用于Pp和Ppk计算的数据则不必进行这两个测试。过程能力指数及过程绩效指数的数学关系是:Cp≥Pp , Cpk≥Ppk。当过程稳定(stable或under control)且数据呈正态分布时Cp=Pp,Cpk=Ppk(注意这里的"="是统计学意义上的相同);只要有特殊原因存在, Cp>Pp , Cpk>Ppk。理解这一点对它们的应用很关键。

如果想知道目前的过程是否已经是达到了稳定的潜在状态时,可以比较过程能力指数和过程绩效指数的差别,即Cp和Pp, Cpk和Ppk的差别:二者差别越小,说明目前的过程的绩效越接近稳定状态,即过程不存在太多的特殊原因引起的偏离(variation)。如果差异很大,则说明过程不稳定,需要找出那些特别的原因,消除这些原因,过程即可被改进。管理者也可以利用过程能力指数和过程绩效指数的差别,制订不断改进的目标。

2、python计算

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
def Cp(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    # 计算每组的平均值和标准差
    sigma = np.std(data, axis=1)
    m, n = np.shape(data)
    sum=0
    for i in range(m):
        sum+=(n-1)*sigma[i]**2
    s=np.sqrt(sum/(m*n-m))
    cp=(USL-LSL)/6/s
    return cp
def Cpk(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    u = np.mean(data)
    sigma = np.std(data, axis=1)
    m, n = np.shape(data)
    sum = 0
    for i in range(m):
        sum += (n - 1) * sigma[i] ** 2
    s = np.sqrt(sum / (m * n - m))
    cpk=min(USL-u,u-LSL)/3/s
    return cpk
def Pp(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    sigma=np.std(data)
    pp=(USL-LSL)/6/sigma
    return pp
def Ppk(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    u=np.mean(data)
    sigma = np.std(data)
    ppk=min(USL-u,u-LSL)/3/sigma
    return ppk

# 使用matplotlib画图
data=np.random.normal(0, 1, (25, 5))
cp=Cp(data,2,-2)
cpk=Cpk(data,2,-2)
pp=Pp(data,2,-2)
ppk=Ppk(data,2,-2)
print("Cp=",cp,"Cpk=",cpk,"Pp=",pp,"Ppk=",ppk)

Cp= 0.7068034057688628 Cpk= 0.705282201140378 Pp= 0.6345352278919454 Ppk= 0.6331695611199301

相关推荐
肥猪猪爸2 分钟前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
LZXCyrus30 分钟前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
Enougme34 分钟前
Appium常用的使用方法(一)
python·appium
懷淰メ39 分钟前
PyQt飞机大战游戏(附下载地址)
开发语言·python·qt·游戏·pyqt·游戏开发·pyqt5
hummhumm1 小时前
第 22 章 - Go语言 测试与基准测试
java·大数据·开发语言·前端·python·golang·log4j
hummhumm1 小时前
第 28 章 - Go语言 Web 开发入门
java·开发语言·前端·python·sql·golang·前端框架
每天吃饭的羊2 小时前
python里的数据结构
开发语言·python
卡卡_R-Python2 小时前
UCI Heart Disease Data Set—— UCI 心脏病数据集介绍
python·plotly·django·virtualenv·pygame
饮长安千年月2 小时前
浅谈就如何解出Reverse-迷宫题之老鼠走迷宫的一些思考
python·网络安全·逆向·ctf
好看资源平台2 小时前
网络爬虫——爬虫项目案例
爬虫·python