python之Cp、Cpk、Pp、Ppk

目录

1、Cp、Cpk、Pp、Ppk

2、python计算


1、Cp、Cpk、Pp、Ppk

Cp= Process Capability Ratio 可被译为"过程能力指数"

Cpk= Process Capability K Ratio 可被译为"过程能力K指数"

Pp= Process Performance Ratio 可被译为"过程绩效指数"

Ppk= Process Performance K Ratio 可被译为"过程绩效K指数"

当 Cpk<1说明制程能力差,不可接受。

1≤Cpk≤1.33,说明制程能力可以,但需改善。

​1.33≤Cpk≤1.67,说明制程能力正常。

过程绩效指数(Pp和Ppk)是过程的过去或现实;而过程能力指数(Cp和Cpk)是过程的潜能或将来。过程能力指数的计算必须满足"过程稳定"和"数据正态分布"两个必要条件;而用于Pp和Ppk计算的数据则不必进行这两个测试。过程能力指数及过程绩效指数的数学关系是:Cp≥Pp , Cpk≥Ppk。当过程稳定(stable或under control)且数据呈正态分布时Cp=Pp,Cpk=Ppk(注意这里的"="是统计学意义上的相同);只要有特殊原因存在, Cp>Pp , Cpk>Ppk。理解这一点对它们的应用很关键。

如果想知道目前的过程是否已经是达到了稳定的潜在状态时,可以比较过程能力指数和过程绩效指数的差别,即Cp和Pp, Cpk和Ppk的差别:二者差别越小,说明目前的过程的绩效越接近稳定状态,即过程不存在太多的特殊原因引起的偏离(variation)。如果差异很大,则说明过程不稳定,需要找出那些特别的原因,消除这些原因,过程即可被改进。管理者也可以利用过程能力指数和过程绩效指数的差别,制订不断改进的目标。

2、python计算

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
def Cp(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    # 计算每组的平均值和标准差
    sigma = np.std(data, axis=1)
    m, n = np.shape(data)
    sum=0
    for i in range(m):
        sum+=(n-1)*sigma[i]**2
    s=np.sqrt(sum/(m*n-m))
    cp=(USL-LSL)/6/s
    return cp
def Cpk(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    u = np.mean(data)
    sigma = np.std(data, axis=1)
    m, n = np.shape(data)
    sum = 0
    for i in range(m):
        sum += (n - 1) * sigma[i] ** 2
    s = np.sqrt(sum / (m * n - m))
    cpk=min(USL-u,u-LSL)/3/s
    return cpk
def Pp(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    sigma=np.std(data)
    pp=(USL-LSL)/6/sigma
    return pp
def Ppk(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    u=np.mean(data)
    sigma = np.std(data)
    ppk=min(USL-u,u-LSL)/3/sigma
    return ppk

# 使用matplotlib画图
data=np.random.normal(0, 1, (25, 5))
cp=Cp(data,2,-2)
cpk=Cpk(data,2,-2)
pp=Pp(data,2,-2)
ppk=Ppk(data,2,-2)
print("Cp=",cp,"Cpk=",cpk,"Pp=",pp,"Ppk=",ppk)

Cp= 0.7068034057688628 Cpk= 0.705282201140378 Pp= 0.6345352278919454 Ppk= 0.6331695611199301

相关推荐
专注API从业者16 分钟前
Python/Java 代码示例:手把手教程调用 1688 API 获取商品详情实时数据
java·linux·数据库·python
java1234_小锋23 分钟前
[免费]基于Python的协同过滤电影推荐系统(Django+Vue+sqlite+爬虫)【论文+源码+SQL脚本】
python·django·电影推荐系统·协同过滤
看海天一色听风起雨落1 小时前
Python学习之装饰器
开发语言·python·学习
XiaoMu_0012 小时前
基于Python+Streamlit的旅游数据分析与预测系统:从数据可视化到机器学习预测的完整实现
python·信息可视化·旅游
THMAIL2 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
我没想到原来他们都是一堆坏人3 小时前
(未完待续...)如何编写一个用于构建python web项目镜像的dockerfile文件
java·前端·python
总有刁民想爱朕ha4 小时前
车牌模拟生成器:Python3.8+Opencv代码实现与商业应用前景(C#、python 开发包SDK)
开发语言·python·数据挖掘
人衣aoa4 小时前
Python编程基础(八) | 类
开发语言·python
一车小面包4 小时前
人工智能中的线性代数总结--简单篇
人工智能·numpy
大模型真好玩5 小时前
深入浅出LangGraph AI Agent智能体开发教程(四)—LangGraph全生态开发工具使用与智能体部署
人工智能·python·mcp