python之Cp、Cpk、Pp、Ppk

目录

1、Cp、Cpk、Pp、Ppk

2、python计算


1、Cp、Cpk、Pp、Ppk

Cp= Process Capability Ratio 可被译为"过程能力指数"

Cpk= Process Capability K Ratio 可被译为"过程能力K指数"

Pp= Process Performance Ratio 可被译为"过程绩效指数"

Ppk= Process Performance K Ratio 可被译为"过程绩效K指数"

当 Cpk<1说明制程能力差,不可接受。

1≤Cpk≤1.33,说明制程能力可以,但需改善。

​1.33≤Cpk≤1.67,说明制程能力正常。

过程绩效指数(Pp和Ppk)是过程的过去或现实;而过程能力指数(Cp和Cpk)是过程的潜能或将来。过程能力指数的计算必须满足"过程稳定"和"数据正态分布"两个必要条件;而用于Pp和Ppk计算的数据则不必进行这两个测试。过程能力指数及过程绩效指数的数学关系是:Cp≥Pp , Cpk≥Ppk。当过程稳定(stable或under control)且数据呈正态分布时Cp=Pp,Cpk=Ppk(注意这里的"="是统计学意义上的相同);只要有特殊原因存在, Cp>Pp , Cpk>Ppk。理解这一点对它们的应用很关键。

如果想知道目前的过程是否已经是达到了稳定的潜在状态时,可以比较过程能力指数和过程绩效指数的差别,即Cp和Pp, Cpk和Ppk的差别:二者差别越小,说明目前的过程的绩效越接近稳定状态,即过程不存在太多的特殊原因引起的偏离(variation)。如果差异很大,则说明过程不稳定,需要找出那些特别的原因,消除这些原因,过程即可被改进。管理者也可以利用过程能力指数和过程绩效指数的差别,制订不断改进的目标。

2、python计算

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
def Cp(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    # 计算每组的平均值和标准差
    sigma = np.std(data, axis=1)
    m, n = np.shape(data)
    sum=0
    for i in range(m):
        sum+=(n-1)*sigma[i]**2
    s=np.sqrt(sum/(m*n-m))
    cp=(USL-LSL)/6/s
    return cp
def Cpk(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    u = np.mean(data)
    sigma = np.std(data, axis=1)
    m, n = np.shape(data)
    sum = 0
    for i in range(m):
        sum += (n - 1) * sigma[i] ** 2
    s = np.sqrt(sum / (m * n - m))
    cpk=min(USL-u,u-LSL)/3/s
    return cpk
def Pp(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    sigma=np.std(data)
    pp=(USL-LSL)/6/sigma
    return pp
def Ppk(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    u=np.mean(data)
    sigma = np.std(data)
    ppk=min(USL-u,u-LSL)/3/sigma
    return ppk

# 使用matplotlib画图
data=np.random.normal(0, 1, (25, 5))
cp=Cp(data,2,-2)
cpk=Cpk(data,2,-2)
pp=Pp(data,2,-2)
ppk=Ppk(data,2,-2)
print("Cp=",cp,"Cpk=",cpk,"Pp=",pp,"Ppk=",ppk)

Cp= 0.7068034057688628 Cpk= 0.705282201140378 Pp= 0.6345352278919454 Ppk= 0.6331695611199301

相关推荐
gfdgd xi3 小时前
GXDE 内核管理器 1.0.1——修复bug、支持loong64
android·linux·运维·python·ubuntu·bug
递归不收敛3 小时前
专属虚拟环境:Hugging Face数据集批量下载(无登录+国内加速)完整指南
人工智能·笔记·git·python·学习·pycharm
我是小邵3 小时前
主流数据分析工具全景对比:Excel / Python / R / Power BI / Tableau / Qlik / Snowflake
python·数据分析·excel
开心-开心急了4 小时前
PySide6 实现win10 手动与自动切换主题 借助系统托盘
pyqt·1024程序员节·pyside
Yolo566Q4 小时前
Python驱动的无人机生态三维建模与碳储/生物量/LULC估算全流程实战技术
开发语言·python·无人机
新手村领路人5 小时前
关于jupyter Notebook
ide·python·jupyter
林恒smileZAZ5 小时前
移动端h5适配方案
人工智能·python·tensorflow
含目的基因的质粒5 小时前
Python异常、模块、包
服务器·开发语言·python
二向箔reverse5 小时前
用langchain搭建简单agent
人工智能·python·langchain
fxshy6 小时前
python使用ffmpeg对视频进行转码
python·ffmpeg·音视频