python之Cp、Cpk、Pp、Ppk

目录

1、Cp、Cpk、Pp、Ppk

2、python计算


1、Cp、Cpk、Pp、Ppk

Cp= Process Capability Ratio 可被译为"过程能力指数"

Cpk= Process Capability K Ratio 可被译为"过程能力K指数"

Pp= Process Performance Ratio 可被译为"过程绩效指数"

Ppk= Process Performance K Ratio 可被译为"过程绩效K指数"

当 Cpk<1说明制程能力差,不可接受。

1≤Cpk≤1.33,说明制程能力可以,但需改善。

​1.33≤Cpk≤1.67,说明制程能力正常。

过程绩效指数(Pp和Ppk)是过程的过去或现实;而过程能力指数(Cp和Cpk)是过程的潜能或将来。过程能力指数的计算必须满足"过程稳定"和"数据正态分布"两个必要条件;而用于Pp和Ppk计算的数据则不必进行这两个测试。过程能力指数及过程绩效指数的数学关系是:Cp≥Pp , Cpk≥Ppk。当过程稳定(stable或under control)且数据呈正态分布时Cp=Pp,Cpk=Ppk(注意这里的"="是统计学意义上的相同);只要有特殊原因存在, Cp>Pp , Cpk>Ppk。理解这一点对它们的应用很关键。

如果想知道目前的过程是否已经是达到了稳定的潜在状态时,可以比较过程能力指数和过程绩效指数的差别,即Cp和Pp, Cpk和Ppk的差别:二者差别越小,说明目前的过程的绩效越接近稳定状态,即过程不存在太多的特殊原因引起的偏离(variation)。如果差异很大,则说明过程不稳定,需要找出那些特别的原因,消除这些原因,过程即可被改进。管理者也可以利用过程能力指数和过程绩效指数的差别,制订不断改进的目标。

2、python计算

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
def Cp(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    # 计算每组的平均值和标准差
    sigma = np.std(data, axis=1)
    m, n = np.shape(data)
    sum=0
    for i in range(m):
        sum+=(n-1)*sigma[i]**2
    s=np.sqrt(sum/(m*n-m))
    cp=(USL-LSL)/6/s
    return cp
def Cpk(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    u = np.mean(data)
    sigma = np.std(data, axis=1)
    m, n = np.shape(data)
    sum = 0
    for i in range(m):
        sum += (n - 1) * sigma[i] ** 2
    s = np.sqrt(sum / (m * n - m))
    cpk=min(USL-u,u-LSL)/3/s
    return cpk
def Pp(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    sigma=np.std(data)
    pp=(USL-LSL)/6/sigma
    return pp
def Ppk(data,USL,LSL):
    """
        :param data: 数据
        :param USL: 数据指标上限
        :param LSL: 数据指标下限
        :return:
        """
    u=np.mean(data)
    sigma = np.std(data)
    ppk=min(USL-u,u-LSL)/3/sigma
    return ppk

# 使用matplotlib画图
data=np.random.normal(0, 1, (25, 5))
cp=Cp(data,2,-2)
cpk=Cpk(data,2,-2)
pp=Pp(data,2,-2)
ppk=Ppk(data,2,-2)
print("Cp=",cp,"Cpk=",cpk,"Pp=",pp,"Ppk=",ppk)

Cp= 0.7068034057688628 Cpk= 0.705282201140378 Pp= 0.6345352278919454 Ppk= 0.6331695611199301

相关推荐
一晌小贪欢1 小时前
Python 爬虫进阶:如何利用反射机制破解常见反爬策略
开发语言·爬虫·python·python爬虫·数据爬虫·爬虫python
躺平大鹅2 小时前
5个实用Python小脚本,新手也能轻松实现(附完整代码)
python
yukai080082 小时前
【最后203篇系列】039 JWT使用
python
独好紫罗兰2 小时前
对python的再认识-基于数据结构进行-a006-元组-拓展
开发语言·数据结构·python
Dfreedom.2 小时前
图像直方图完全解析:从原理到实战应用
图像处理·python·opencv·直方图·直方图均衡化
铉铉这波能秀2 小时前
LeetCode Hot100数据结构背景知识之集合(Set)Python2026新版
数据结构·python·算法·leetcode·哈希算法
怒放吧德德3 小时前
Python3基础:基础实战巩固,从“会用”到“活用”
后端·python
aiguangyuan3 小时前
基于BERT的中文命名实体识别实战解析
人工智能·python·nlp
喵手3 小时前
Python爬虫实战:知识挖掘机 - 知乎问答与专栏文章的深度分页采集系统(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集知乎问答与专栏文章·采集知乎数据·采集知乎数据存储sqlite
铉铉这波能秀3 小时前
LeetCode Hot100数据结构背景知识之元组(Tuple)Python2026新版
数据结构·python·算法·leetcode·元组·tuple