Python深度学习实战-基于tensorflow.keras六步法搭建神经网络(附源码和实现效果)

实现功能

第一步:import tensorflow as tf:导入模块

第二步:制定输入网络的训练集和测试集

第三步:tf.keras.models.Sequential():搭建网络结构

第四步:model.compile():配置训练方法

第五步:model.fit():执行训练过程

第六步:model.summary():打印网络结构

实现代码

python 复制代码
import tensorflow as tf
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

model.summary()

实现效果

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习基础知识与案例。

致力于 只做原创 ,以最简单的方式理解和学习,关注我一起交流成长。

邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我 获取相关数据集和源码 ,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。

相关推荐
CoovallyAIHub14 小时前
一文读懂大语言模型家族:LLM、MLLM、LMM、VLM核心概念全解析
深度学习·算法·计算机视觉
安娜的信息安全说14 小时前
LangGraph:构建智能工作流的新方式
python·ai·langgraph
爱吃泡芙的小白白14 小时前
如何在现有配置好环境的Pycharm中安装jupyterlab这个工具
ide·python·pycharm·notebook·虚拟环境·jupyterlab
Keep_Trying_Go14 小时前
文生图算法C4Synth: Cross-Caption Cycle-Consistent Text-to-Image Synthesis详解
人工智能·pytorch·深度学习·计算机视觉·文生图
智算菩萨14 小时前
【Python机器学习】交叉验证与超参数调优:自动化寻优之旅
人工智能·深度学习·机器学习
汤姆yu15 小时前
基于深度学习的交通标志识别系统
人工智能·深度学习
六毛的毛15 小时前
比较含退格的字符串
开发语言·python·leetcode
小鸡吃米…15 小时前
机器学习 - Python 库
人工智能·python·机器学习
xingzhemengyou115 小时前
Python GUI之tkinter-基础控件
开发语言·python
在屏幕前出油15 小时前
Python面向对象编程基础——类、实例对象与内存空间
开发语言·python