Python深度学习实战-基于tensorflow.keras六步法搭建神经网络(附源码和实现效果)

实现功能

第一步:import tensorflow as tf:导入模块

第二步:制定输入网络的训练集和测试集

第三步:tf.keras.models.Sequential():搭建网络结构

第四步:model.compile():配置训练方法

第五步:model.fit():执行训练过程

第六步:model.summary():打印网络结构

实现代码

python 复制代码
import tensorflow as tf
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

model.summary()

实现效果

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习基础知识与案例。

致力于 只做原创 ,以最简单的方式理解和学习,关注我一起交流成长。

邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我 获取相关数据集和源码 ,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。

相关推荐
Honmaple18 分钟前
中国四级城市联动数据,包含港澳台,内含json , sql , python 脚本
python·sql·json
BoBoZz1919 分钟前
Curvatures 曲率的计算、边缘曲率的调整以及曲率、颜色的映射
python·vtk·图形渲染·图形处理
少吃零食多运动1 小时前
【Jupyter notebook修改工作目录】
python·jupyter
Swizard1 小时前
别买树莓派了!3步教你在安卓手机上跑通 CPython + PaddleOCR,打造随身 AI 识别终端
python·ai·移动开发
weixin_421585012 小时前
PYTHON 迭代器1 - PEP-255
开发语言·python
L.fountain2 小时前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归
hxxjxw3 小时前
Pytorch分布式训练/多卡训练(六) —— Expert Parallelism (MoE的特殊策略)
人工智能·pytorch·python
dagouaofei3 小时前
PPT AI生成实测报告:哪些工具值得长期使用?
人工智能·python·powerpoint
BoBoZz193 小时前
ExtractPolyLinesFromPolyData切割一个三维模型(球体),并可视化切割后产生的多条等高线
python·vtk·图形渲染·图形处理