Python深度学习实战-基于tensorflow.keras六步法搭建神经网络(附源码和实现效果)

实现功能

第一步:import tensorflow as tf:导入模块

第二步:制定输入网络的训练集和测试集

第三步:tf.keras.models.Sequential():搭建网络结构

第四步:model.compile():配置训练方法

第五步:model.fit():执行训练过程

第六步:model.summary():打印网络结构

实现代码

python 复制代码
import tensorflow as tf
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

model.summary()

实现效果

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习基础知识与案例。

致力于 只做原创 ,以最简单的方式理解和学习,关注我一起交流成长。

邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我 获取相关数据集和源码 ,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。

相关推荐
DN202013 分钟前
当AI开始评估客户的“成交指数”
数据结构·人工智能·python·microsoft·链表
小小张说故事14 分钟前
Python图像处理利器:Pillow (PIL)入门指南
后端·python·图像识别
好家伙VCC27 分钟前
**标题:发散创新|用Python构建GAN图像生成器:从理论到实战全流程解析**---在深度学习飞速发展的今天,**生成对抗
java·python·深度学习·生成对抗网络
leikooo42 分钟前
基于 GitHub Actions 的 Notion RSS 自动化部署指南
python·github·rss
Hcoco_me1 小时前
深度学习目标关联:常见深度学习匹配方法全面详解
人工智能·深度学习·分类·数据挖掘·自动驾驶
l1t1 小时前
在python 3.14 容器中安装和使用chdb包
开发语言·python·clickhouse·chdb
yuanmenghao2 小时前
Linux 性能实战 | 第 17 篇:strace 系统调用分析与性能调优 [特殊字符]
linux·python·性能优化
bst@微胖子2 小时前
PyTorch深度学习框架项目合集一
人工智能·pytorch·python
Axis tech2 小时前
Xsens动作捕捉系统采集用于人形机器人AI大数据训练的精确运动数据
人工智能·深度学习·机器人