Python深度学习实战-基于tensorflow.keras六步法搭建神经网络(附源码和实现效果)

实现功能

第一步:import tensorflow as tf:导入模块

第二步:制定输入网络的训练集和测试集

第三步:tf.keras.models.Sequential():搭建网络结构

第四步:model.compile():配置训练方法

第五步:model.fit():执行训练过程

第六步:model.summary():打印网络结构

实现代码

python 复制代码
import tensorflow as tf
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

model.summary()

实现效果

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习基础知识与案例。

致力于 只做原创 ,以最简单的方式理解和学习,关注我一起交流成长。

邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我 获取相关数据集和源码 ,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。

相关推荐
热爱生活的五柒4 分钟前
pytorch中数据和模型都要部署在cuda上面
人工智能·pytorch·深度学习
HyperAI超神经2 小时前
【TVM 教程】使用 Tensorize 来利用硬件内联函数
人工智能·深度学习·自然语言处理·tvm·计算机技术·编程开发·编译框架
小白学大数据3 小时前
Python爬虫开发中的分析与方案制定
开发语言·c++·爬虫·python
Shy9604184 小时前
Doc2Vec句子向量
python·语言模型
埃菲尔铁塔_CV算法6 小时前
深度学习神经网络创新点方向
人工智能·深度学习·神经网络
秀儿还能再秀7 小时前
机器学习——简单线性回归、逻辑回归
笔记·python·学习·机器学习
图片转成excel表格7 小时前
WPS Office Excel 转 PDF 后图片丢失的解决方法
人工智能·科技·深度学习
阿_旭8 小时前
如何使用OpenCV和Python进行相机校准
python·opencv·相机校准·畸变校准
幸运的星竹8 小时前
使用pytest+openpyxl做接口自动化遇到的问题
python·自动化·pytest
李歘歘9 小时前
万字长文解读深度学习——多模态模型CLIP、BLIP、ViLT
人工智能·深度学习