【考研数学】线性代数第六章 —— 二次型(3,正定矩阵与正定二次型)

文章目录


一、基本概念

1.1 引例

(1)二次型 f ( x 1 , x 2 , x 3 ) = x 1 2 + 3 x 2 2 + 2 x 3 2 = X T A X f(x_1,x_2,x_3)=x_1^2+3x_2^2+2x_3^2=\pmb{X^TAX} f(x1,x2,x3)=x12+3x22+2x32=XTAX 有如下特点:

  1. 对任意的 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3 ,有 f ( x 1 , x 2 , x 3 ) ≥ 0 f(x_1,x_2,x_3)\geq0 f(x1,x2,x3)≥0 ;
  2. f ( x 1 , x 2 , x 3 ) = 0 f(x_1,x_2,x_3)=0 f(x1,x2,x3)=0 当且仅当 x 1 = x 2 = x 3 = 0 x_1=x_2=x_3=0 x1=x2=x3=0 ,或对任意 X ≠ 0 \pmb{X}\ne\pmb{0} X=0 ,有 X T A X > 0 \pmb{X^TAX}>0 XTAX>0 。

(2)二次型 f ( x 1 , x 2 , x 3 ) = x 1 2 − 2 x 1 x 2 + 4 x 2 2 + 6 x 3 2 = ( x 1 − x 2 ) 2 + 3 x 2 2 + 6 x 3 2 = X T A X f(x_1,x_2,x_3)=x_1^2-2x_1x_2+4x_2^2+6x_3^2=(x_1-x_2)^2+3x_2^2+6x_3^2=\pmb{X^TAX} f(x1,x2,x3)=x12−2x1x2+4x22+6x32=(x1−x2)2+3x22+6x32=XTAX 有如下特点:

  1. 对任意的 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3 ,有 f ( x 1 , x 2 , x 3 ) ≥ 0 f(x_1,x_2,x_3)\geq0 f(x1,x2,x3)≥0 ;
  2. f ( x 1 , x 2 , x 3 ) = 0 f(x_1,x_2,x_3)=0 f(x1,x2,x3)=0 当且仅当 x 1 = x 2 = x 3 = 0 x_1=x_2=x_3=0 x1=x2=x3=0 ,或对任意 X ≠ 0 \pmb{X}\ne\pmb{0} X=0 ,有 X T A X > 0 \pmb{X^TAX}>0 XTAX>0 。

1.2 正定二次型概念

对二次型 f ( x 1 , x 2 , ⋯   , x n ) = X T A X f(x_1,x_2,\cdots,x_n)=\pmb{X^TAX} f(x1,x2,⋯,xn)=XTAX ,若对任意 X ≠ 0 \pmb{X}\ne\pmb{0} X=0 ,总有 X T A X > 0 \pmb{X^TAX}>0 XTAX>0 ,称 X T A X \pmb{X^TAX} XTAX 为正定二次型, A \pmb{A} A 为正定矩阵。


二、正定二次型的判别

定理 1 ------ 二次型 X T A X \pmb{X^TAX} XTAX 为正定二次型的充分必要条件是 A \pmb{A} A 的特征值均为正数。

定理 2 ------ 二次型 X T A X \pmb{X^TAX} XTAX 为正定二次型的充分必要条件是 A \pmb{A} A 的顺序主子式都大于 0 ,即 a 11 > 0 , ∣ a 11 a 12 a 21 a 22 ∣ > 0 , ⋯   , ∣ A ∣ > 0. a_{11}>0,\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}>0,\cdots,|\pmb{A}|>0. a11>0, a11a21a12a22 >0,⋯,∣A∣>0. 定理 3 ------ 设 A T = A \pmb{A^T=A} AT=A ,则 A \pmb{A} A 为正定矩阵的充分必要条件是存在可逆矩阵 B \pmb{B} B 使得 A = B T B \pmb{A=B^TB} A=BTB 。

定理 4 ------ 设 A T = A \pmb{A^T=A} AT=A ,则 A \pmb{A} A 为正定矩阵的充分必要条件是 A \pmb{A} A 与 E \pmb{E} E 合同。

定理 5 ------ 设 A T = A \pmb{A^T=A} AT=A ,则 A \pmb{A} A 为正定矩阵的充分必要条件是 A \pmb{A} A 的正惯性指数为 n n n 。

定理 6 ------ 设 A , B \pmb{A,B} A,B 分别为 m m m 阶和 n n n 阶实对称矩阵,则 [ A 0 0 B ] \begin{bmatrix} \pmb{A} & \pmb{0} \\ \pmb{0} & \pmb{B} \end{bmatrix} [A00B] 为正定矩阵的充分必要条件为 A , B \pmb{A,B} A,B 均为正定矩阵。

二次型 f ( X ) = X T A X f(\pmb{X})=\pmb{X^TAX} f(X)=XTAX 正定的必要条件是 a i i > 0 ( i = 1 , 2 , ⋯   , n ) ; ∣ A ∣ > 0 a_{ii}>0(i=1,2,\cdots,n);|A|>0 aii>0(i=1,2,⋯,n);∣A∣>0 。

即可以先看看对角线元素和行列式是否大于 0 ,作初步判别。

若 A \pmb{A} A 为正定矩阵,则其一定可逆;且 A − 1 , A ∗ \pmb{A}^{-1},\pmb{A}^* A−1,A∗ 均正定。

若 A , B \pmb{A,B} A,B 都是正定矩阵,则 A + B \pmb{A}+\pmb{B} A+B 也是正定矩阵。


写在最后

那线性代数到这,理论也就基本结束了。

相关推荐
九州ip动态9 小时前
自媒体工作室如何矩阵?自媒体矩阵养号策略
线性代数·矩阵·媒体
田梓燊10 小时前
数学复习笔记 19
笔记·线性代数·机器学习
田梓燊1 天前
数学复习笔记 12
笔记·线性代数·机器学习
jerry6092 天前
LLM笔记(六)线性代数
笔记·学习·线性代数·自然语言处理
田梓燊2 天前
数学复习笔记 14
笔记·线性代数·矩阵
田梓燊2 天前
数学复习笔记 15
笔记·线性代数·机器学习
Magnum Lehar2 天前
3d游戏引擎的math矩阵实现
线性代数·矩阵·游戏引擎
HappyAcmen3 天前
线代第二章矩阵第九、十节:初等变换、矩阵的标准形、阶梯形与行最简阶梯形、初等矩阵
笔记·学习·线性代数·矩阵
人类发明了工具3 天前
【优化算法】协方差矩阵自适应进化策略(Covariance Matrix Adaptation Evolution Strategy,CMA-ES)
线性代数·算法·矩阵·cma-es
赵青临的辉3 天前
基础数学:线性代数与概率论在AI中的应用
人工智能·线性代数·概率论