分布式限流:Redis

目录

1:如何实现分布式限流

2:限流的几种类别

2.1:固定窗口限流

2.2:滑动窗口限流

2.3:漏桶限流

2.4:令牌桶限流

3:实现分布式限流:Redis

3.1:引入Redisson的依赖包

3.2:初始化Redisson

3.3:创建Redisson的限流类


1:如何实现分布式限流

1:把统计用户的使用频率等这些数据放到一个集中的存储,比如redis,这样无论用户的请求落在了哪台服务器,都以集中存储的数据为准。(Redis)

2:限流的几种类别

2.1:固定窗口限流

单位时间内,允许部分操作。 1小时,只允许10个用户操作。

**优点:**最简单

**缺点:**可能出现流量突刺

eg:前59分钟,第59分钟来了十个操作。第一小时01分钟又来了十个操作,就可能导致流量突刺,相当于2分钟实现了20个操作。

2.2:滑动窗口限流

单位时间内,允许部分操作,但是这个时间是滑动的 需要指定滑动单位

滑动单位: 1min

开始前:

0s 1h 2h

一分钟:

1min 1h1min

**优点;**能够解决上面流量突刺的问题,第59分钟,限流窗口59min到1h59min,这个时间段内接受10次请求,只要在这个窗口内,更多的操作就会被拒绝。

**缺点:**实现相对复杂。滑动单位越小,限效果越好。

2.3:漏桶限流

以固定的速率请求,当请求桶满后,拒绝请求。

每秒处理10个请求,桶的容量是10,每0.1秒处理1次请求(固定的),如果1秒内,来了10个都可以处理完,但如果一秒内来了11个请求,最后那个请求就会被拒绝。

**优点:**能够一定程度上应对流量突刺,能够以固定的速率处理请求,安全性高

**缺点:**速度是固定的,没有办法处理一批请求,只能一个一个来

2.4:令牌桶限流

管理员先生成一批令牌,每秒生成10个令牌,当用户操作前,先去拿到令牌,有令牌的人可以先执行,都能够同时执行。

**优点:**能够并发处理同时的请求,并发性高

**缺点:**时间单位选取的问题。

以上漏桶限流和令牌桶限流最常用。

3:实现分布式限流:Redis

3.1:引入Redisson的依赖包

XML 复制代码
  <dependency>
            <groupId>org.redisson</groupId>
            <artifactId>redisson</artifactId>
            <version>3.17.5</version>
   </dependency>

3.2:初始化Redisson

java 复制代码
@Configuration
@ConfigurationProperties(prefix = "spring.redis")

public class RedissonConfig {
    private Integer database;
    private String host;
    private String port;
    @Bean
    public RedissonClient getRedissonClient(){
        //配置Redis的配置类
        Config config=new Config();
        config.useSingleServer()
                .setDatabase(database)
                .setAddress("redis://"+host+":"+port);
        RedissonClient redisson= Redisson.create(config);
        return redisson;

    }
}

3.3:创建Redisson的限流类

java 复制代码
@Service
public class RedisLimiterManage {
    @Autowired
    private RedissonClient redissonClient;
    //key:区分不同的限流器:不同的用户id
    public void doRateLimit(String key){

        RRateLimiter rateLimiter=redissonClient.getRateLimiter(key);
        //将所有用户的访问次数放在同一个限流器上,1秒允许两次
        rateLimiter.trySetRate(RateType.OVERALL,2,1, RateIntervalUnit.SECONDS);
        //每当一个用户来了之后,请求一个令牌
        boolean result = rateLimiter.tryAcquire(1);
        if(!result){
            throw new BusinessException(ErrorCode.NO_AUTH_ERROR,"请求过于频繁");
        }
    }
}

当我们使用分布式限流Redis的时候,只需要让这个RedisLimiterManage调用doRateLimit方法,就可以进行分布式限流的操作。

java 复制代码
 @Autowired
 private RedisLimiterManage redisLimiterManage;
//引入依赖

 //进行限流判断
        redisLimiterManage.doRateLimit("genChartByAi_"+user.getId());
 //每个用户的限流器
相关推荐
麦兜*4 小时前
MongoDB 性能调优:十大实战经验总结 详细介绍
数据库·spring boot·mongodb·spring cloud·缓存·硬件架构
叫我阿柒啊4 小时前
从Java全栈到Vue3实战:一次真实面试中的技术探索
java·数据库·spring boot·微服务·typescript·vue3·restful
武子康4 小时前
Java-118 深入浅出 MySQL ShardingSphere 分片剖析:SQL 支持范围、限制与优化实践
java·大数据·数据库·分布式·sql·mysql·性能优化
努力努力再努力wz5 小时前
【c++进阶系列】:万字详解AVL树(附源码实现)
java·运维·开发语言·c++·redis
毕设源码-赖学姐5 小时前
【开题答辩全过程】以 基于Hadoop电商数据的可视化分析为例,包含答辩的问题和答案
大数据·hadoop·分布式
BillKu6 小时前
Spring Boot中MyBatis的定义与使用
spring boot·mybatis
Lyinj6 小时前
springboot源码学习。(SPI和自动装配)
java·spring boot·学习
喂完待续7 小时前
【Big Data】Apache Kafka 分布式流处理平台的实时处理实践与洞察
分布式·kafka·消息队列·big data·数据处理·序列晋升
lozhyf7 小时前
固定资产管理系统(vue+Springboot+mybatis)
vue.js·spring boot·mybatis