反向传播法(backpropagation)的基本原理

本文通过整理李宏毅老师的机器学习教程的内容,介绍神经网络中用于更新参数的反向传播法(backpropagation)的基本原理。

反向传播 backpropagation, 李宏毅

神经网络的结构:

loss(损失)的计算:

L ( θ ) = ∑ n = 1 N C n ( θ ) L(\theta) = \sum_{n=1}^{N} C^{n}(\theta) L(θ)=n=1∑NCn(θ)

其中,上标 n n n 表示第 n n n 条数据。

易知:网络参数的更新取决于数据的 loss 值,而更新方式即为梯度下降法(gradient descent)。

以单个神经元为例:

loss 对参数 w w w 的偏微分:
∂ L ( θ ) ∂ w = ∑ n = 1 N ∂ C n ( θ ) ∂ w \frac {\partial L(\theta)} {\partial w} = \sum_{n=1}^{N} \frac {\partial C^{n}(\theta)} {\partial w} ∂w∂L(θ)=n=1∑N∂w∂Cn(θ)

对参数 b b b 的偏微分类似。

简单地,考虑其中一条数据的 loss 值,并将 C n ( θ ) C^{n}(\theta) Cn(θ) 简记为 C C C,则:
∂ C ∂ w = ∂ z ∂ w ∂ C ∂ z \frac {\partial C} {\partial w} = \frac {\partial z} {\partial w} \frac {\partial C} {\partial z} ∂w∂C=∂w∂z∂z∂C

其中,对第一项偏微分 ∂ z ∂ w \frac {\partial z} {\partial w} ∂w∂z 的计算称为 forward pass,对第二项偏微分 ∂ C ∂ z \frac {\partial C} {\partial z} ∂z∂C 的计算称为 backward pass,继续看下去会理解其原因。

易知:第一项偏微分其实就等于数据输入 x x x,即:
∂ z ∂ w 1 = x 1 ∂ z ∂ w 2 = x 2 \frac {\partial z} {\partial w_1} = x_1 \quad \frac {\partial z} {\partial w_2} = x_2 ∂w1∂z=x1∂w2∂z=x2

而计算第二项偏微分则不太容易,因为在 z z z 后面的非线性模块之后,可能还有多个网络层:

于是对第二项偏微分 ∂ C ∂ z \frac {\partial C} {\partial z} ∂z∂C 继续展开,得到:
∂ C ∂ z = ∂ a ∂ z ∂ C ∂ a \frac {\partial C} {\partial z} = \frac {\partial a} {\partial z} \frac {\partial C} {\partial a} ∂z∂C=∂z∂a∂a∂C

而由于非线性模块的输出 a = σ ( z ) a = \sigma(z) a=σ(z),故第一项: ∂ a ∂ z = σ ′ ( z ) \frac {\partial a} {\partial z} = \sigma^{\prime}(z) ∂z∂a=σ′(z);

而第二项可进一步展开为:
∂ C ∂ a = ∂ z ′ ∂ a ∂ C ∂ z ′ + ∂ z ′ ′ ∂ a ∂ C ∂ z ′ ′ \frac {\partial C} {\partial a} = \frac {\partial z^{\prime}} {\partial a} \frac {\partial C} {\partial z^{\prime}} + \frac {\partial z^{\prime \prime}} {\partial a} \frac {\partial C} {\partial z^{\prime \prime}} ∂a∂C=∂a∂z′∂z′∂C+∂a∂z′′∂z′′∂C

与前面类似地,有:
∂ z ′ ∂ a = w 3 ∂ z ′ ′ ∂ a = w 4 \frac {\partial z^{\prime}} {\partial a} = w_3 \quad \frac {\partial z^{\prime \prime}} {\partial a} = w_4 ∂a∂z′=w3∂a∂z′′=w4

而计算 ∂ C ∂ z ′ \frac {\partial C} {\partial z^{\prime}} ∂z′∂C 和 ∂ C ∂ z ′ ′ \frac {\partial C} {\partial z^{\prime \prime}} ∂z′′∂C 需要下一次迭代,以此类推。

因此,如果网络的层级特别多,正向计算会非常繁琐。

但如果反过来看,从输出层开始,先得到 ∂ C ∂ z ′ \frac {\partial C} {\partial z^{\prime}} ∂z′∂C 和 ∂ C ∂ z ′ ′ \frac {\partial C} {\partial z^{\prime \prime}} ∂z′′∂C,再反向计算前面各层的 ∂ C ∂ z \frac {\partial C} {\partial z} ∂z∂C 就会比较容易:

其中,由于正向计算时已计算过各层的输出,因此 σ ′ ( z ) \sigma^{\prime}(z) σ′(z) 为常数。

最后,总结整体过程入下:

相关推荐
天上路人4 分钟前
AI神经网络降噪算法在语音通话产品中的应用优势与前景分析
深度学习·神经网络·算法·硬件架构·音视频·实时音视频
好吃的肘子8 分钟前
MongoDB 应用实战
大数据·开发语言·数据库·算法·mongodb·全文检索
汉克老师23 分钟前
GESP2025年3月认证C++二级( 第三部分编程题(1)等差矩阵)
c++·算法·矩阵·gesp二级·gesp2级
sz66cm33 分钟前
算法基础 -- 小根堆构建的两种方式:上浮法与下沉法
数据结构·算法
緈福的街口37 分钟前
【leetcode】94. 二叉树的中序遍历
算法·leetcode
小刘要努力呀!1 小时前
嵌入式开发学习(第二阶段 C语言基础)
c语言·学习·算法
野曙2 小时前
快速选择算法:优化大数据中的 Top-K 问题
大数据·数据结构·c++·算法·第k小·第k大
Codeking__2 小时前
”一维前缀和“算法原理及模板
数据结构·算法
休息一下接着来2 小时前
C++ 条件变量与线程通知机制:std::condition_variable
开发语言·c++·算法
Code哈哈笑3 小时前
【机器学习】支持向量回归(SVR)从入门到实战:原理、实现与优化指南
人工智能·算法·机器学习·回归·svm