反向传播法(backpropagation)的基本原理

本文通过整理李宏毅老师的机器学习教程的内容,介绍神经网络中用于更新参数的反向传播法(backpropagation)的基本原理。

反向传播 backpropagation, 李宏毅

神经网络的结构:

loss(损失)的计算:

L ( θ ) = ∑ n = 1 N C n ( θ ) L(\theta) = \sum_{n=1}^{N} C^{n}(\theta) L(θ)=n=1∑NCn(θ)

其中,上标 n n n 表示第 n n n 条数据。

易知:网络参数的更新取决于数据的 loss 值,而更新方式即为梯度下降法(gradient descent)。

以单个神经元为例:

loss 对参数 w w w 的偏微分:
∂ L ( θ ) ∂ w = ∑ n = 1 N ∂ C n ( θ ) ∂ w \frac {\partial L(\theta)} {\partial w} = \sum_{n=1}^{N} \frac {\partial C^{n}(\theta)} {\partial w} ∂w∂L(θ)=n=1∑N∂w∂Cn(θ)

对参数 b b b 的偏微分类似。

简单地,考虑其中一条数据的 loss 值,并将 C n ( θ ) C^{n}(\theta) Cn(θ) 简记为 C C C,则:
∂ C ∂ w = ∂ z ∂ w ∂ C ∂ z \frac {\partial C} {\partial w} = \frac {\partial z} {\partial w} \frac {\partial C} {\partial z} ∂w∂C=∂w∂z∂z∂C

其中,对第一项偏微分 ∂ z ∂ w \frac {\partial z} {\partial w} ∂w∂z 的计算称为 forward pass,对第二项偏微分 ∂ C ∂ z \frac {\partial C} {\partial z} ∂z∂C 的计算称为 backward pass,继续看下去会理解其原因。

易知:第一项偏微分其实就等于数据输入 x x x,即:
∂ z ∂ w 1 = x 1 ∂ z ∂ w 2 = x 2 \frac {\partial z} {\partial w_1} = x_1 \quad \frac {\partial z} {\partial w_2} = x_2 ∂w1∂z=x1∂w2∂z=x2

而计算第二项偏微分则不太容易,因为在 z z z 后面的非线性模块之后,可能还有多个网络层:

于是对第二项偏微分 ∂ C ∂ z \frac {\partial C} {\partial z} ∂z∂C 继续展开,得到:
∂ C ∂ z = ∂ a ∂ z ∂ C ∂ a \frac {\partial C} {\partial z} = \frac {\partial a} {\partial z} \frac {\partial C} {\partial a} ∂z∂C=∂z∂a∂a∂C

而由于非线性模块的输出 a = σ ( z ) a = \sigma(z) a=σ(z),故第一项: ∂ a ∂ z = σ ′ ( z ) \frac {\partial a} {\partial z} = \sigma^{\prime}(z) ∂z∂a=σ′(z);

而第二项可进一步展开为:
∂ C ∂ a = ∂ z ′ ∂ a ∂ C ∂ z ′ + ∂ z ′ ′ ∂ a ∂ C ∂ z ′ ′ \frac {\partial C} {\partial a} = \frac {\partial z^{\prime}} {\partial a} \frac {\partial C} {\partial z^{\prime}} + \frac {\partial z^{\prime \prime}} {\partial a} \frac {\partial C} {\partial z^{\prime \prime}} ∂a∂C=∂a∂z′∂z′∂C+∂a∂z′′∂z′′∂C

与前面类似地,有:
∂ z ′ ∂ a = w 3 ∂ z ′ ′ ∂ a = w 4 \frac {\partial z^{\prime}} {\partial a} = w_3 \quad \frac {\partial z^{\prime \prime}} {\partial a} = w_4 ∂a∂z′=w3∂a∂z′′=w4

而计算 ∂ C ∂ z ′ \frac {\partial C} {\partial z^{\prime}} ∂z′∂C 和 ∂ C ∂ z ′ ′ \frac {\partial C} {\partial z^{\prime \prime}} ∂z′′∂C 需要下一次迭代,以此类推。

因此,如果网络的层级特别多,正向计算会非常繁琐。

但如果反过来看,从输出层开始,先得到 ∂ C ∂ z ′ \frac {\partial C} {\partial z^{\prime}} ∂z′∂C 和 ∂ C ∂ z ′ ′ \frac {\partial C} {\partial z^{\prime \prime}} ∂z′′∂C,再反向计算前面各层的 ∂ C ∂ z \frac {\partial C} {\partial z} ∂z∂C 就会比较容易:

其中,由于正向计算时已计算过各层的输出,因此 σ ′ ( z ) \sigma^{\prime}(z) σ′(z) 为常数。

最后,总结整体过程入下:

相关推荐
梵刹古音44 分钟前
【C语言】 函数基础与定义
c语言·开发语言·算法
筵陌1 小时前
算法:模拟
算法
We་ct2 小时前
LeetCode 205. 同构字符串:解题思路+代码优化全解析
前端·算法·leetcode·typescript
renhongxia12 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
CoderCodingNo2 小时前
【GESP】C++四级/五级练习题 luogu-P1223 排队接水
开发语言·c++·算法
民乐团扒谱机2 小时前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳
CoderCodingNo2 小时前
【GESP】C++五级/四级练习题 luogu-P1413 坚果保龄球
开发语言·c++·算法
2301_822366353 小时前
C++中的命令模式变体
开发语言·c++·算法
XX風3 小时前
3.2K-means
人工智能·算法·kmeans
蒟蒻的贤4 小时前
leetcode链表
算法·leetcode·链表