【机器学习】KNN算法-鸢尾花种类预测

KNN算法-鸢尾花种类预测

文章目录

K最近邻(K-Nearest Neighbors,KNN)算法是一种用于模式识别和分类的简单但强大的机器学习算法。它的工作原理非常直观:给定一个新数据点,KNN算法会查找离这个数据点最近的K个已知数据点,然后基于这K个最近邻数据点的类别来决定新数据点的类别。简而言之,KNN算法通过周围数据点的多数投票来决定新数据点所属的类别。KNN常用于分类问题,如图像分类、文本分类、垃圾邮件检测等。它也可以用于回归问题,称为K最近邻回归(K-Nearest Neighbors Regression),用于预测数值型输出。

1. 数据集介绍

Iris数据集是常用的分类实验数据集,由Fisher,1936搜集整理。Iris也称为鸢尾花数据集,是一类多重变量分析的数据集。关于数据集的介绍:

  • 实例数量:150个,三种各有50个
  • 属性数量:4个,数值型,数值型,帮助预测的属性和类
  • Attribute Information:
    • 萼片长度,萼片宽度,花瓣长度,花瓣宽度 cm
    • 山鸢尾,变色鸢尾,维吉尼亚鸢尾

以下是代码、注释以及输出:

python 复制代码
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# K---近邻算法
def KNN_demo():
    """
    sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')
    n_neighbors:int可选,默认为5,k_neighbors查询默认使用的邻居数
    algorithm:{'auto','ball_tree','kd_tree','brute'},可选用于计算最近邻居的算法:'ball_tree'将会使用BallTree,'kd_tree'
    将会使用KDTree。'auto'将尝试根据传递给fit方法的值来决定最合适的算法。(不同实现方式影响效率)
    :return:
    """
    # 获取数据
    iris = load_iris()
    # 划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state= 6)
    # 特征工程 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # KNN算法预估器
    estimator = KNeighborsClassifier(n_neighbors= 3)
    estimator.fit(x_train, y_train)
    # 模型评估
    # 方法一:
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法二:
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    return None

if __name__ == "__main__":
    KNN_demo()
    pass
复制代码
y_predict:
 [0 2 0 0 2 1 1 0 2 1 2 1 2 2 1 1 2 1 1 0 0 2 0 0 1 1 1 2 0 1 0 1 0 0 1 2 1
 2]
直接比对真实值和预测值:
 [ True  True  True  True  True  True False  True  True  True  True  True
  True  True  True False  True  True  True  True  True  True  True  True
  True  True  True  True  True  True  True  True  True  True False  True
  True  True]
准确率为:
 0.9210526315789473

2. KNN优缺点:

  • 优点:简单,易于实现,不需训练
  • 缺点:懒惰算法,对测试样本分类时计算量大,内存开销大;必须指定K值,K值选择不当则分类精度不能保证。
  • 使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试。
相关推荐
微学AI3 分钟前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆14 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤17 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
阿让啊19 分钟前
C语言中操作字节的某一位
c语言·开发语言·数据结构·单片机·算法
武汉唯众智创19 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
এ᭄画画的北北19 分钟前
力扣-160.相交链表
算法·leetcode·链表
Johny_Zhao30 分钟前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子40 分钟前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人1 小时前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者1 小时前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能