Spark UI中Shuffle dataSize 和shuffle bytes written 指标区别

背景

本文基于Spark 3.1.1

目前在做一些知识回顾的时候,发现了一些很有意思的事情,就是Spark UI中ShuffleExchangeExec 的dataSize和shuffle bytes written指标是不一样的,

那么在AQE阶段的时候,是以哪个指标来作为每个Task分区大小的参考呢

结论

先说结论 dataSzie指标是 是存在内存中的UnsafeRow 的大小的总和,AQE阶段(规则OptimizeSkewedJoin/CoalesceShufflePartitions)用到判断分区是否倾斜或者合并分区的依据是来自于这个值,

shuffle bytes written指的是写入文件的字节数,会区分压缩和非压缩,如果在开启了压缩(也就是spark.shuffle.compress true)和未开启压缩的情况下,该值的大小是不一样的。

开启压缩如下:

未开启压缩如下:

先说杂谈

这两个指标的值都在 ShuffleExchangeExec中:

复制代码
case class ShuffleExchangeExec(
    override val outputPartitioning: Partitioning,
    child: SparkPlan,
    shuffleOrigin: ShuffleOrigin = ENSURE_REQUIREMENTS)
  extends ShuffleExchangeLike {

  private lazy val writeMetrics =
    SQLShuffleWriteMetricsReporter.createShuffleWriteMetrics(sparkContext)
  private[sql] lazy val readMetrics =
    SQLShuffleReadMetricsReporter.createShuffleReadMetrics(sparkContext)
  override lazy val metrics = Map(
    "dataSize" -> SQLMetrics.createSizeMetric(sparkContext, "data size")
  ) ++ readMetrics ++ writeMetrics

dataSize指标来自于哪里

涉及到datasize的数据流是怎么样的如下,一切还是得从ShuffleMapTask这个shuffle的起始操作讲起:

复制代码
ShuffleMapTask
   ||
   \/
runTask
   ||
   \/
dep.shuffleWriterProcessor.write //这里的shuffleWriterProcessor是来自于 ShuffleExchangeExec中的createShuffleWriteProcessor
   ||
   \/
writer.write()  //这里是writer 是 UnsafeShuffleWriter类型的实例
   ||
   \/
insertRecordIntoSorter
   ||
   \/
UnsafeRowSerializerInstance.writeValue
   ||
   \/
dataSize.add(row.getSizeInBytes)

这里的 rowUnsafeRow的实例,这样就获取到了实际内存中的每个分区的大小,

而ShuffleMapTask runTask 方法最终返回的是MapStatus,而该MapStatus最终是在UnsafeShuffleWriter的closeAndWriteOutput方法中被赋值的:

复制代码
void closeAndWriteOutput() throws IOException {
    assert(sorter != null);
    updatePeakMemoryUsed();
    serBuffer = null;
    serOutputStream = null;
    final SpillInfo[] spills = sorter.closeAndGetSpills();
    sorter = null;
    final long[] partitionLengths;
    try {
      partitionLengths = mergeSpills(spills);
    } finally {
      for (SpillInfo spill : spills) {
        if (spill.file.exists() && !spill.file.delete()) {
          logger.error("Error while deleting spill file {}", spill.file.getPath());
        }
      }
    }
    mapStatus = MapStatus$.MODULE$.apply(
      blockManager.shuffleServerId(), partitionLengths, mapId);
  }

shuffle bytes written指标来自哪里

基本流程和dataSize 一样,还是来自于ShuffleMapTask

复制代码
ShuffleMapTask
   ||
   \/
runTask
   ||
   \/
dep.shuffleWriterProcessor.write //这里的shuffleWriterProcessor是来自于 ShuffleExchangeExec中的createShuffleWriteProcessor
   ||
   \/
writer.write()  //这里是writer 是 UnsafeShuffleWriter类型的实例
   ||
   \/
closeAndWriteOutput
   ||
   \/
sorter.closeAndGetSpills() ->  writeSortedFile -> writer.commitAndGet -> writeMetrics.incBytesWritten(committedPosition - reportedPosition) -> serializerManager.wrapStream(blockId, mcs) // 这里进行了压缩
   ||
   \/
mergeSpills
   ||
   \/
mergeSpillsUsingStandardWriter
   ||
   \/
mergeSpillsWithFileStream -> writeMetrics.incBytesWritten(numBytesWritten)
   ||
   \/
writeMetrics.decBytesWritten(spills[spills.length - 1].file.length())
相关推荐
程途拾光1581 小时前
企业部门协作泳道图制作工具 PC端
大数据·运维·流程图
落叶,听雪2 小时前
河南建站系统哪个好
大数据·人工智能·python
大数据追光猿2 小时前
【大数据Doris】生产环境,Doris主键模型全表7000万数据更新写入为什么那么慢?
大数据·经验分享·笔记·性能优化·doris
武子康3 小时前
大数据-197 K折交叉验证实战:sklearn 看均值/方差,选更稳的 KNN 超参
大数据·后端·机器学习
数据皮皮侠3 小时前
2m气温数据集(1940-2024)
大数据·数据库·人工智能·制造·微信开放平台
Coder_Boy_5 小时前
基于SpringAI的智能运维平台(AI驱动)
大数据·运维·人工智能
智能化咨询5 小时前
(99页PPT)智慧校园XXX学院总体解决方案(附下载方式)
大数据
wang_yb8 小时前
数据分析师的“水晶球”:时间序列分析
大数据·databook
ModestCoder_8 小时前
Git 版本管理教程
大数据·git·elasticsearch
hg01188 小时前
湖南工程机械海外火爆,非洲成为出口新增长极
大数据