Spark UI中Shuffle dataSize 和shuffle bytes written 指标区别

背景

本文基于Spark 3.1.1

目前在做一些知识回顾的时候,发现了一些很有意思的事情,就是Spark UI中ShuffleExchangeExec 的dataSize和shuffle bytes written指标是不一样的,

那么在AQE阶段的时候,是以哪个指标来作为每个Task分区大小的参考呢

结论

先说结论 dataSzie指标是 是存在内存中的UnsafeRow 的大小的总和,AQE阶段(规则OptimizeSkewedJoin/CoalesceShufflePartitions)用到判断分区是否倾斜或者合并分区的依据是来自于这个值,

shuffle bytes written指的是写入文件的字节数,会区分压缩和非压缩,如果在开启了压缩(也就是spark.shuffle.compress true)和未开启压缩的情况下,该值的大小是不一样的。

开启压缩如下:

未开启压缩如下:

先说杂谈

这两个指标的值都在 ShuffleExchangeExec中:

复制代码
case class ShuffleExchangeExec(
    override val outputPartitioning: Partitioning,
    child: SparkPlan,
    shuffleOrigin: ShuffleOrigin = ENSURE_REQUIREMENTS)
  extends ShuffleExchangeLike {

  private lazy val writeMetrics =
    SQLShuffleWriteMetricsReporter.createShuffleWriteMetrics(sparkContext)
  private[sql] lazy val readMetrics =
    SQLShuffleReadMetricsReporter.createShuffleReadMetrics(sparkContext)
  override lazy val metrics = Map(
    "dataSize" -> SQLMetrics.createSizeMetric(sparkContext, "data size")
  ) ++ readMetrics ++ writeMetrics

dataSize指标来自于哪里

涉及到datasize的数据流是怎么样的如下,一切还是得从ShuffleMapTask这个shuffle的起始操作讲起:

复制代码
ShuffleMapTask
   ||
   \/
runTask
   ||
   \/
dep.shuffleWriterProcessor.write //这里的shuffleWriterProcessor是来自于 ShuffleExchangeExec中的createShuffleWriteProcessor
   ||
   \/
writer.write()  //这里是writer 是 UnsafeShuffleWriter类型的实例
   ||
   \/
insertRecordIntoSorter
   ||
   \/
UnsafeRowSerializerInstance.writeValue
   ||
   \/
dataSize.add(row.getSizeInBytes)

这里的 rowUnsafeRow的实例,这样就获取到了实际内存中的每个分区的大小,

而ShuffleMapTask runTask 方法最终返回的是MapStatus,而该MapStatus最终是在UnsafeShuffleWriter的closeAndWriteOutput方法中被赋值的:

复制代码
void closeAndWriteOutput() throws IOException {
    assert(sorter != null);
    updatePeakMemoryUsed();
    serBuffer = null;
    serOutputStream = null;
    final SpillInfo[] spills = sorter.closeAndGetSpills();
    sorter = null;
    final long[] partitionLengths;
    try {
      partitionLengths = mergeSpills(spills);
    } finally {
      for (SpillInfo spill : spills) {
        if (spill.file.exists() && !spill.file.delete()) {
          logger.error("Error while deleting spill file {}", spill.file.getPath());
        }
      }
    }
    mapStatus = MapStatus$.MODULE$.apply(
      blockManager.shuffleServerId(), partitionLengths, mapId);
  }

shuffle bytes written指标来自哪里

基本流程和dataSize 一样,还是来自于ShuffleMapTask

复制代码
ShuffleMapTask
   ||
   \/
runTask
   ||
   \/
dep.shuffleWriterProcessor.write //这里的shuffleWriterProcessor是来自于 ShuffleExchangeExec中的createShuffleWriteProcessor
   ||
   \/
writer.write()  //这里是writer 是 UnsafeShuffleWriter类型的实例
   ||
   \/
closeAndWriteOutput
   ||
   \/
sorter.closeAndGetSpills() ->  writeSortedFile -> writer.commitAndGet -> writeMetrics.incBytesWritten(committedPosition - reportedPosition) -> serializerManager.wrapStream(blockId, mcs) // 这里进行了压缩
   ||
   \/
mergeSpills
   ||
   \/
mergeSpillsUsingStandardWriter
   ||
   \/
mergeSpillsWithFileStream -> writeMetrics.incBytesWritten(numBytesWritten)
   ||
   \/
writeMetrics.decBytesWritten(spills[spills.length - 1].file.length())
相关推荐
字节数据平台24 分钟前
火山引擎发布Data Agent新能力,推动用户洞察进入“智能3.0时代”
大数据·人工智能
TDengine (老段)32 分钟前
TDengine 字符串函数 CHAR_LENGTH 用户手册
大数据·数据库·时序数据库·tdengine·涛思数据
TDengine (老段)35 分钟前
TDengine 数学函数 CRC32 用户手册
java·大数据·数据库·sql·时序数据库·tdengine·1024程序员节
数智顾问1 小时前
(111页PPT)大型集团IT治理体系规划详细解决方案(附下载方式)
大数据·人工智能
Aevget1 小时前
界面控件Telerik UI for WPF 2025 Q3亮点 - 集成AI编码助手
人工智能·ui·wpf·界面控件·ui开发·telerik
geneculture1 小时前
官学商大跨界 · 产学研大综合:融智学新范式应用体系
大数据·人工智能·物联网·数据挖掘·哲学与科学统一性·信息融智学
唐兴通个人8 小时前
人工智能Deepseek医药AI培训师培训讲师唐兴通讲课课程纲要
大数据·人工智能
梦里不知身是客118 小时前
spark读取table中的数据【hive】
大数据·hive·spark
赞奇科技Xsuperzone10 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia
努力成为一个程序猿.11 小时前
Flink集群部署以及作业提交模式详解
大数据·flink