Python深度学习实战-基于Sequential方法搭建BP神经网络实现分类任务(附源码和实现效果)

实现功能

  1. 第一步:导入模块:import tensorflow as tf

  2. 第二步:制定输入网络的训练集和测试集

  3. 第三步:搭建网络结构:tf.keras.models.Sequential()

  4. 第四步:配置训练方法:model.compile():

  5. 第五步:执行训练过程:model.fit():

  6. 第六步:打印网络结构:model.summary()

  7. 第七步:执行验证过程:model.evaluate()

实现代码

python 复制代码
import tensorflow as tf
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu', input_shape=(X.shape[1],)),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(len(set(y)), activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32)
model.summary()
# 评估模型
test_loss, test_accuracy = model.evaluate(X_test, y_test)

实现效果

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习基础知识与案例。

致力于 只做原创 ,以最简单的方式理解和学习,关注我一起交流成长。

邀请三个朋友关注本订阅号V:数据杂坛,即可在后台联系我 获取相关数据集和源码 ,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。

相关推荐
Yan-英杰20 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
weixin_307779131 小时前
Azure上基于OpenAI GPT-4模型验证行政区域数据的设计方案
数据仓库·python·云计算·aws
玩电脑的辣条哥2 小时前
Python如何播放本地音乐并在web页面播放
开发语言·前端·python
taoqick2 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
多想和从前一样5 小时前
Django 创建表时 “__str__ ”方法的使用
后端·python·django
charles_vaez5 小时前
开源模型应用落地-LangGraph101-探索 LangGraph 短期记忆
深度学习·语言模型·自然语言处理
WHATEVER_LEO6 小时前
【每日论文】Latent Radiance Fields with 3D-aware 2D Representations
人工智能·深度学习·神经网络·机器学习·计算机视觉·自然语言处理
小喵要摸鱼6 小时前
【Pytorch 库】自定义数据集相关的类
pytorch·python
bdawn7 小时前
深度集成DeepSeek大模型:WebSocket流式聊天实现
python·websocket·openai·api·实时聊天·deepseek大模型·流式输出
Jackson@ML7 小时前
Python数据可视化简介
开发语言·python·数据可视化