论文阅读——BART

Arxiv: https://arxiv.org/abs/1910.13461

一个去噪自编码器的预训练序列到序列的模型。是一个结合了双向和自回归transformers的模型。

预训练分为两个阶段:任意噪声函数破坏文本和序列模型重建原始文本

一、模型

input:被破坏的文本-->bidirectional encoder-->left-to-right autoregressive decoder-->output

标准transformers模型,encoder 6层,decoder 12层

其他细节:激活函数把ReLU换成GeLUs

1、预训练:

允许输入任意类型噪声破坏的文本,极端情况下,如果任意信息都丢失,BART等同于语言模型。

Token Masking:和BERT一样

Token Deletion:随机抽取到的token删除(Token Masking是抽取到的token用mask代替,这个是随机抽取到的token删除),模型可以学习到什么位置的token丢失了

Text Infilling:对多个文本跨度进行采样,跨度长度取自泊松分布,可以教模型预测一个跨度中缺少多少tokens

Sentence Permutation:文章句子打乱顺序

Document Rotation:文章中随机找到一个token,将文章翻转,以该token作为文章的开头

2、微调:

各下游任务微调

二、Loss:交叉熵

相关推荐
adaAS141431533 分钟前
【深度学习】YOLOv8-SOEP-RFPN-MFM实现太阳能电池板缺陷检测与分类_1
深度学习·yolo·分类
Coding茶水间36 分钟前
基于深度学习的驾驶行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
深度学习·qt·yolo
执笔论英雄44 分钟前
【RL】中Token级策略梯度损失
人工智能·pytorch·深度学习
万俟淋曦1 小时前
【论文速递】2025年第52周(Dec-21-27)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器学习·机器人·大模型·论文·具身智能
IRevers1 小时前
【目标检测】深度学习目标检测损失函数总结
人工智能·pytorch·深度学习·目标检测·计算机视觉
sali-tec1 小时前
C# 基于OpenCv的视觉工作流-章8-形态学
人工智能·深度学习·opencv·算法·计算机视觉
皮肤科大白1 小时前
2015Residual Networks(简称ResNet)
深度学习
没学上了10 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好10 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
AI产品备案11 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记