深度学习与计算机视觉(一)

文章目录

计算机视觉与图像处理的区别

  • 图像处理得到的结果是处理后的图像,图像处理的目的是改善图像的质量

    • 图像增强
    • 图像复原
  • 计算机视觉得到的结果可能是一个符号、一堆数据、一个知识

    • 人脸识别
    • 人脸比对
  • 传统的图像识别的机器学习方法的一般流程包括:

    • 特征提取→数据
    • 数据→机器学习
  • 为什么要提取图像的特征

    • 提取有利于识别的信息,抑制与识别无关的或者对识别有干扰的信息
    • 把不同尺度的图像映射到一个统一的特征空间,便于应用机器学习算法。
  • 机器学习的框架:D数据,A算法,H假设空间,h* H中最好的假设(真实误差最小的假设)

  • 概率近似正确

人工神经元

f:响应函数/激活函数一般都是非线性的函数,且一般都单调递增;常用的激活函数包括以下:


因为f是单调递增的函数,,如果 w>0,则,说明前一个神经元对后一个神经元有激活的作用;如果w<0 ,说明前一个神经元对后一个神经元有抑制作用。

感知机 - 分类任务


  • 感知机算法在线性可分的情况下,一定可以收敛,也就是一定可以找到一个能正确分类所有样本的分类函数
  • 但是同一个样本集,有可能会得到不同的解
    • 不同的初始值,不同的样本处理次序产生的结果不同
    • 不能得到全局最优的解
  • 线性不可分的时候,算法会失败

感知机的算法

损失函数:不能处处可导


复制代码
解决方法:次梯度

Sigmoid神经元/对数几率回归

只有激活函数的不同,sigmoid处处连续可导,输出的是对数几率



对数损失/交叉熵损失函数

损失函数通过比较模型对样本X的预测结果与样本的真实类别y之间的差异,计算损失,差异越大,损失越大,差异越小,损失越小。


梯度下降法- 极小化对数损失函数

线性神经元/线性回归

神经元有两个部分组成:收集信号的过程和激活的过程,收集信号如果是使用线性过程(累加)就是线性神经元。至于收集到的信号能不能激活下一个神经元,要看激活函数的过程,这个过程一般不是线性的。

均方差损失函数-线性回归常用损失函数

使用梯度下降法训练线性回归模型

是对w,b进行更新


一元导数与微分的关系: d f / d x = f ′ 一元导数与微分的关系:df/dx=f' 一元导数与微分的关系:df/dx=f′
全微分: d F = ( α F / α x ) d x + ( α F / α y ) d y 全微分:dF=(αF/αx) dx+(αF/αy) dy 全微分:dF=(αF/αx)dx+(αF/αy)dy

线性分类器

α ∗ β = ∣ α ∣ ∗ ∣ β ∣ c o s < α , β > ( α , β 为向量),其中 ∣ β ∣ c o s < α , β > 称为 β 在 α 上的投影 α*β=|α|*|β|cos<α,β>(α,β为向量),其中|β|cos<α,β>称为β在α上的投影 α∗β=∣α∣∗∣β∣cos<α,β>(α,β为向量),其中∣β∣cos<α,β>称为β在α上的投影

多分类器的决策面

决策面是可以把各种分类分开的一个面,在三级分类中,决策面应该在超平面的角平分线处划分

softmax Regression

  • 这种argmax会把打分最高的结果设为1,其他的结果设为0;但是这种投影的坏处在于只看得到分类,看不到分类的置信为多少,所以引入了softmax Regression( e z 变成正数,正数加和为分母,求概率 e^z变成正数,正数加和为分母,求概率 ez变成正数,正数加和为分母,求概率)


softmax的决策规则就是:寻找概率最大的作为分类的输出,又因为e函数是单调递增的,所以只要z最大,则概率就会最大。

训练softmax regression

这里要特别注意,这里计算损失函数的那个概率,是真实样本所对应的概率,不是预测值的那个概率

训练过程

交叉熵损失


解决参数冗余

可以使用一个正则化项:选择损失函数小且Ω也小的

训练softmax Classifier


混淆矩阵

对角线上的表示第k个类别的精度,混淆矩阵可以清晰的看到哪一个类别的分类情况较好(精度高),哪一个类别的分类情况不好(精度第),以及具体的分类情况是什么

合页(铰链)损失


相关推荐
萤丰信息5 分钟前
技术赋能安全:智慧工地构建城市建设新防线
java·大数据·开发语言·人工智能·智慧城市·智慧工地
AI视觉网奇24 分钟前
音频分类模型笔记
人工智能·python·深度学习
Dante但丁27 分钟前
手扒Github项目文档级知识图谱构建框架RAKG(保姆级)Day4
人工智能
用户51914958484535 分钟前
使用JavaScript与CSS创建"移动高亮"导航栏
人工智能·aigc
Java中文社群43 分钟前
淘宝首位程序员离职,竟投身AI新公司做这事!
人工智能·后端·程序员
失散131 小时前
自然语言处理——02 文本预处理(上)
人工智能·自然语言处理
CoovallyAIHub1 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·计算机视觉
Listennnn1 小时前
nuScence数据集
人工智能
duration~1 小时前
SpringAI集成MCP
人工智能·后端·spring·ai
用户5191495848452 小时前
Linux内核UAF漏洞利用实战:Holstein v3挑战解析
人工智能·aigc