OpenCV学习(四)——轨迹栏(调色板与不同通道图像)

轨迹栏

    • [4. OpenCV轨迹栏](#4. OpenCV轨迹栏)
      • [4.1 轨迹栏作为调色板](#4.1 轨迹栏作为调色板)
      • [4.2 轨迹栏显示不同通道图像](#4.2 轨迹栏显示不同通道图像)

4. OpenCV轨迹栏

会用到以下主要两个函数

cv2.createTrackbar(trackbarName, windowName, value, count, onChange)创建轨迹栏

主要参数:

  • trackbarName:轨迹栏名称
  • windowName:附加到的窗口名称
  • value:默认值
  • count:最大值
  • onChange:执行的回调函数每次跟踪栏值更改,下面例子函数什么都不做

getTrackbarPos(trackbarname, winname)获取轨迹栏的位置

  • trackbarname:轨迹栏名称
  • winname:附加到的窗口名称

4.1 轨迹栏作为调色板

创建一个黑色图像,通过轨迹栏改变BGR三通道值来显示不同颜色

python 复制代码
import numpy as np
import cv2


def nothing(x):
    pass


# 创建一个黑色的图像,一个窗口
img = np.zeros((512, 512, 3), np.uint8)
cv2.namedWindow('image')
# 创建颜色变化的轨迹栏
cv2.createTrackbar('R', 'image', 0, 255, nothing)
cv2.createTrackbar('G', 'image', 0, 255, nothing)
cv2.createTrackbar('B', 'image', 0, 255, nothing)
# 为 ON/OFF 功能创建开关
switch = '0 : OFF \n1 : ON'
cv2.createTrackbar(switch, 'image', 0, 1, nothing)
while (1):
    cv2.imshow('image', img)
    k = cv2.waitKey(1) & 0xFF
    if k == 27:
        break
    # 得到四条轨迹的当前位置
    r = cv2.getTrackbarPos('R', 'image')
    g = cv2.getTrackbarPos('G', 'image')
    b = cv2.getTrackbarPos('B', 'image')
    s = cv2.getTrackbarPos(switch, 'image')
    if s == 0:
        img[:] = 0
    else:
        img[:] = [b, g, r]
cv2.destroyAllWindows()

4.2 轨迹栏显示不同通道图像

OpenCV读取的是BGR形式,通过轨迹栏可以显示不同通道的图像,例如:只有R单通道的图像、将两通道合并的图像、将三通道合并为原图像。

  • split(): 通道分离,(b, g, r)形式
  • merge() :通道合并,输入1通道或者3通道
python 复制代码
import numpy as np
import cv2


def nothing(x):
    pass


# 将选择的通道设置为零矩阵,不显示
def zeros_channels(channel):
    zeros = np.zeros_like(channel)
    return zeros


img = cv2.imread('lena.jpg')
# 将3通道分离
b, g, r = cv2.split(img)
cv2.namedWindow('image')
# 创建三通道开关的轨迹栏
switch_r = 'R_channel'
cv2.createTrackbar(switch_r, 'image', 0, 1, nothing)
switch_g = 'G_channel'
cv2.createTrackbar(switch_g, 'image', 0, 1, nothing)
switch_b = 'B_channel'
cv2.createTrackbar(switch_b, 'image', 0, 1, nothing)

while (1):
    cv2.imshow('image', img)
    k = cv2.waitKey(1) & 0xFF
    if k == 27:
        break
    # 得到三条轨迹的当前位置
    s_r = cv2.getTrackbarPos(switch_r, 'image')
    s_g = cv2.getTrackbarPos(switch_g, 'image')
    s_b = cv2.getTrackbarPos(switch_b, 'image')

    if s_r == 1:
        if s_g == 1:
            if s_b == 1:
                img = cv2.merge([b, g, r])  # 对通道按照BGR的顺序合并生成图像bgr
            else:
                img = cv2.merge([zeros_channels(b), g, r]) # 不显示b通道
        else:
            if s_b == 1:
                img = cv2.merge([b, zeros_channels(g), r])  # 对通道按照BGR的顺序合并生成图像bgr
            else:
                img = cv2.merge([zeros_channels(b), zeros_channels(g), r]) # 不显示b, g通道
    else:
        if s_g == 1:
            if s_b == 1:
                img = cv2.merge([b, g, zeros_channels(r)])  # 对通道按照BGR的顺序合并生成图像bgr
            else:
                img = cv2.merge([zeros_channels(b), g, zeros_channels(r)]) # 不显示b, r通道
        else:
            if s_b == 1:
                img = cv2.merge([b, zeros_channels(g), zeros_channels(r)])  # 对通道按照BGR的顺序合并生成图像bgr
            else:
                img = cv2.merge([zeros_channels(b), zeros_channels(g), zeros_channels(r)]) # 不显示b, g, r通道


cv2.destroyAllWindows()
相关推荐
JackmoodCC3 分钟前
Java学习总结-递归-递归寻找文件绝对路径
学习
3DVisionary7 分钟前
3D-DIC与机器学习协同模拟材料应力-应变本构行为研究
人工智能·机器学习·3d·3d-dic技术 机器学习·应力-应变本构行为·卷积神经网络(ecnn)·数字图像相关法(dic)
神经星星9 分钟前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星10 分钟前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言
守护者17018 分钟前
JAVA学习-练习试用Java实现“实现一个Hadoop程序,使用Hive进行复杂查询和数据筛查”
java·学习
程序员Linc28 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh36 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能39 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_797882091 小时前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
吴梓穆1 小时前
UE5学习笔记 FPS游戏制作35 使用.csv配置文件
笔记·学习·ue5