论文阅读——GPT3

来自论文:Language Models are Few-Shot Learners

Arxiv:https://arxiv.org/abs/2005.14165v2

记录下一些概念等。,没有太多细节。

预训练LM尽管任务无关,但是要达到好的效果仍然需要在特定数据集或任务上微调。因此需要消除这个限制。解决这些问题的一个潜在途径是元学习------在语言模型的背景下,这意味着该模型在训练时发展了一系列广泛的技能和模式识别能力,然后在推理时使用这些能力来快速适应或识别所需的任务(如图1.1所示)

"in-context learning":

关于"zero-shot", "one-shot", or "few-shot"的解释:

随着模型增大,in-context learning效果越好:

关于"zero-shot", "one-shot", or "few-shot"

模型结构和GPT2一样,但是改了初始化、预归一化、reversible tokenization,以及在transformers层中使用类似Sparse Transformer的交替密集和局部稀疏的注意力模式。

内容窗口大小=2048 tokens

训练了8个不同大小的模型:

其他细节:

训练大模型需要大batch,小学习率。

few-shot learning中,实例样本数量k取值可以从0到最大窗口大小,一般可以设为10-100。

相关推荐
ARM+FPGA+AI工业主板定制专家38 分钟前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习
小猪咪piggy2 小时前
【深度学习入门】深度学习知识点总结
人工智能·深度学习
热爱编程的OP3 小时前
机器学习 vs 深度学习
人工智能·深度学习·机器学习
跟德姆(dom)一起学AI4 小时前
0基础跟德姆(dom)一起学AI 自然语言处理18-解码器部分实现
人工智能·python·rnn·深度学习·自然语言处理·transformer
清图4 小时前
Python 预训练:打通视觉与大语言模型应用壁垒——Python预训练视觉和大语言模型
人工智能·python·深度学习·机器学习·计算机视觉·自然语言处理·ai作画
红色的山茶花4 小时前
YOLOv10-1.1部分代码阅读笔记-predictor.py
笔记·深度学习·yolo
Francek Chen7 小时前
【深度学习基础】多层感知机 | 模型选择、欠拟合和过拟合
人工智能·pytorch·深度学习·神经网络·多层感知机·过拟合
好评笔记8 小时前
AIGC视频扩散模型新星:Video 版本的SD模型
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
dddcyy8 小时前
利用现有模型处理面部视频获取特征向量(3)
人工智能·深度学习
CM莫问9 小时前
<论文>用于大语言模型去偏的因果奖励机制
人工智能·深度学习·算法·语言模型·自然语言处理