PyTorch中grid_sample的使用方法

官方文档

首先Pytorch中grid_sample函数的接口声明如下:

torch.nn.functional.grid_sample(input, grid, mode='bilinear', padding_mode='zeros', align_corners=None)
  • input : 输入tensor, shape为 [N, C, H_in, W_in]
  • grid: 一个field flow, shape为[N, H_out, W_out, 2],最后一个维度是每个grid(H_out_i, W_out_i)在input的哪个位置的邻域去采点。数值范围被归一化到[-1,1]。

这里的input和output就是输入的图片,或者是网络中的feature map。关键的处理过程在于grid,grid的最后一维的大小为2,即表示input中pixel的位置信息 (x,y) ,这里一般会将x和y的取值范围归一化到 [−1,1] 之间, (−1,−1) 表示input左上角的像素的坐标,(1,1) 表示input右下角的像素的坐标,对于超出这个范围的坐标(x,y),函数将会根据参数_padding_mode_的设定进行不同的处理。

  • padding_mode='zeros':对于越界的位置在网格中采用pixel value=0进行填充。
  • padding_mode='border':对于越界的位置在网格中采用边界的pixel value进行填充。
  • padding_mode='reflection':对于越界的位置在网格中采用关于边界的对称值进行填充。

对于mode='bilinear'参数,则定义了在input中指定位置的pixel value中进行插值的方法,为什么需要插值呢?因为前面我们说了,grid中表示的位置信息x和y的取值范围在 [−1,1] 之间,这就意味着我们要根据一个浮点型的坐标值在input中对pixel value进行采样,mode有nearest和bilinear两种模式。

  • nearest就是直接采用与 (x,y) 距离最近处的像素值来填充grid
  • bilinear则是采用双线性插值的方法来进行填充,总之其与nearest的区别就是nearest只考虑最近点的pixel value,而bilinear则采用(x,y)周围的四个pixel value进行加权平均值来填充grid。

双线性插值:

举例:

python 复制代码
import torch
from torch.nn import functional as F


inp = torch.ones(1, 128, 4, 4)

# 目的是得到一个 长宽为20的tensor
out_h = 20
out_w = 20
grid_x, grid_y = torch.meshgrid(
        torch.linspace(-1, 1, out_h),
        torch.linspace(-1, 1, out_w)
    )
# grid 最后一维度表示在input采样的位置(x,y),y表示图像纵轴,x表示横轴,grid顺序应该先x递增,后y递增
grid = torch.stack((grid_y, grid_x), dim=-1).unsqueeze(0) # (out_h, out_w, 2)
# F.grid_sample -> input:(N,C,Hin,Win), grid:(N,Hout,Wout,2), output:(N,C,Hout,Wout)
# outp = F.grid_sample(features, grid, align_corners=True, mode='bilinear')
outp = F.grid_sample(inp, grid, align_corners=True, mode='nearest')
print(outp.shape) # torch.Size([1, 128, 20, 20])

对图像,特征进行采样用以上grid才不会图像位置错误

相关推荐
这个男人是小帅12 分钟前
【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本
人工智能·pytorch·python·深度学习·分类
__基本操作__14 分钟前
边缘提取函数 [OPENCV--2]
人工智能·opencv·计算机视觉
Doctor老王18 分钟前
TR3:Pytorch复现Transformer
人工智能·pytorch·transformer
热爱生活的五柒19 分钟前
pytorch中数据和模型都要部署在cuda上面
人工智能·pytorch·深度学习
HyperAI超神经2 小时前
【TVM 教程】使用 Tensorize 来利用硬件内联函数
人工智能·深度学习·自然语言处理·tvm·计算机技术·编程开发·编译框架
小白学大数据3 小时前
Python爬虫开发中的分析与方案制定
开发语言·c++·爬虫·python
扫地的小何尚4 小时前
NVIDIA RTX 系统上使用 llama.cpp 加速 LLM
人工智能·aigc·llama·gpu·nvidia·cuda·英伟达
Shy9604184 小时前
Doc2Vec句子向量
python·语言模型
埃菲尔铁塔_CV算法6 小时前
深度学习神经网络创新点方向
人工智能·深度学习·神经网络
艾思科蓝-何老师【H8053】7 小时前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学