PyTorch入门学习(六):神经网络的基本骨架使用

目录

一、引言

二、创建神经网络骨架

三、执行前向传播


一、引言

神经网络是深度学习的基础。在PyTorch中,可以使用nn.Module类创建自定义神经网络模型。本文将演示如何创建一个简单的神经网络骨架并执行前向传播操作。

二、创建神经网络骨架

首先,导入PyTorch库并创建一个继承自nn.Module的自定义神经网络模型:

python 复制代码
import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        output = input + 1
        return output

tudui = Tudui()
  • 导入PyTorch库以便使用深度学习工具。
  • 创建一个名为Tudui的自定义神经网络模型,它继承自nn.Module
  • __init__方法中,调用父类的构造函数,初始化神经网络。
  • forward方法定义神经网络的前向传播过程,其中对输入进行了简单的操作,将输入加1。

三、执行前向传播

接下来,执行前向传播操作,将输入数据传递给神经网络模型:

python 复制代码
x = torch.tensor(1.0)
output = tudui(x)
print(output)
  • 创建一个名为x的张量,其值为1.0,作为输入数据。
  • 通过调用Tudui模型的实例tudui并传递输入数据x,执行前向传播操作。
  • 最后,打印前向传播的输出结果。

完整代码如下:

python 复制代码
import torch
from torch import nn

# 创建一个自定义神经网络模型 Tudui
class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        # 前向传播函数,将输入加1并返回
        output = input + 1
        return output

# 创建 Tudui 类的实例 tudui
tudui = Tudui()

# 创建一个张量 x,值为1.0,作为输入数据
x = torch.tensor(1.0)

# 将输入 x 传递给 tudui 模型,执行前向传播
output = tudui(x)

# 打印前向传播的输出结果
print(output)

参考资料:

视频教程:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】

相关推荐
-Springer-1 分钟前
STM32 学习 —— 个人学习笔记2-2(新建工程)
笔记·stm32·学习
tb_first13 分钟前
万字超详细苍穹外卖学习笔记4
java·spring boot·笔记·学习·spring·mybatis
LucDelton1 小时前
模型微调思路
人工智能·深度学习·机器学习
代码游侠1 小时前
学习笔记——Linux字符设备驱动开发
linux·arm开发·驱动开发·单片机·嵌入式硬件·学习·算法
charlie1145141911 小时前
嵌入式C++教程——ETL(Embedded Template Library)
开发语言·c++·笔记·学习·嵌入式·etl
李小星同志2 小时前
VID2WORLD: CRAFTING VIDEO DIFFUSION MODELSTO INTERACTIVE WORLD MODELS论文学习
学习
林深现海2 小时前
【刘二大人】PyTorch深度学习实践笔记 —— 第四集:反向传播(凝练版)
pytorch·python·numpy
哥布林学者2 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制 课后习题与代码实践
深度学习·ai
AAD555888992 小时前
压接工具检测识别----RPN-R50-Caffe-C4模型训练与优化
人工智能·深度学习
OLOLOadsd1232 小时前
基于NAS-FCOS的拥挤路段车辆检测系统:R50-Caffe-FPN-NASHead-GN-Head模型训练与优化_1
人工智能·深度学习