PyTorch入门学习(六):神经网络的基本骨架使用

目录

一、引言

二、创建神经网络骨架

三、执行前向传播


一、引言

神经网络是深度学习的基础。在PyTorch中,可以使用nn.Module类创建自定义神经网络模型。本文将演示如何创建一个简单的神经网络骨架并执行前向传播操作。

二、创建神经网络骨架

首先,导入PyTorch库并创建一个继承自nn.Module的自定义神经网络模型:

python 复制代码
import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        output = input + 1
        return output

tudui = Tudui()
  • 导入PyTorch库以便使用深度学习工具。
  • 创建一个名为Tudui的自定义神经网络模型,它继承自nn.Module
  • __init__方法中,调用父类的构造函数,初始化神经网络。
  • forward方法定义神经网络的前向传播过程,其中对输入进行了简单的操作,将输入加1。

三、执行前向传播

接下来,执行前向传播操作,将输入数据传递给神经网络模型:

python 复制代码
x = torch.tensor(1.0)
output = tudui(x)
print(output)
  • 创建一个名为x的张量,其值为1.0,作为输入数据。
  • 通过调用Tudui模型的实例tudui并传递输入数据x,执行前向传播操作。
  • 最后,打印前向传播的输出结果。

完整代码如下:

python 复制代码
import torch
from torch import nn

# 创建一个自定义神经网络模型 Tudui
class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        # 前向传播函数,将输入加1并返回
        output = input + 1
        return output

# 创建 Tudui 类的实例 tudui
tudui = Tudui()

# 创建一个张量 x,值为1.0,作为输入数据
x = torch.tensor(1.0)

# 将输入 x 传递给 tudui 模型,执行前向传播
output = tudui(x)

# 打印前向传播的输出结果
print(output)

参考资料:

视频教程:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】

相关推荐
X_StarX1 小时前
【Unity笔记02】订阅事件-自动开门
笔记·学习·unity·游戏引擎·游戏开发·大学生
MingYue_SSS1 小时前
开关电源抄板学习
经验分享·笔记·嵌入式硬件·学习
Blossom.1182 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
weixin_437398212 小时前
转Go学习笔记(2)进阶
服务器·笔记·后端·学习·架构·golang
慕y2742 小时前
Java学习第十六部分——JUnit框架
java·开发语言·学习
烟锁池塘柳02 小时前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
peace..3 小时前
温湿度变送器与电脑进行485通讯连接并显示在触摸屏中(mcgs)
经验分享·学习·其他
Ronin-Lotus3 小时前
深度学习篇---Yolov系列
人工智能·深度学习
爱学习的茄子3 小时前
AI驱动的单词学习应用:从图片识别到语音合成的完整实现
前端·深度学习·react.js
软件黑马王子4 小时前
C#系统学习第八章——字符串
开发语言·学习·c#