【随机过程】布朗运动

这里写目录标题

  • [Brownian motion](#Brownian motion)

Brownian motion

The brownian motion 1D and brownian motion 2D functions, written with the cumsum command and without for loops, are used to generate a one-dimensional and two-dimensional Brownian motion, respectively.

使用cumsum命令编写的布朗运动1D函数和不带for循环的布朗运动2D函数分别生成一维和二维布朗运动。

These Wiener processes are characterized by normal-centered increments with variance h, where h is the time increment, generated by the command randn(1,n)*sqrt(h).

这些维纳过程的特征是方差为h的正态中心增量,其中h是时间增量,由命令randn(1,n)*sqrt(h)生成。

We consider a time interval T = 1000, divided into n = 1000 increments of value h = 1.

我们考虑一个时间间隔T = 1000,分成n = 1000个值h = 1的增量。

Figure1 shows, for example, two trajectories W(t) of a one-dimensional Wiener process.

例如,图1显示了一维维纳过程的两条轨迹W(t)。

Figure 1 { Two examples of trajectories as a function of the time t of a Wiener process W(t) in one
dimension.
图1{两个关于一维维纳过程W(t)时间t的轨迹函数的例子。

Figure 2,on the other hand, shows two examples of a two-dimensional Brownian motion trajectory, this time as a function of the X and Y spatial coordinates.

另一方面,图2显示了两个二维布朗运动轨迹的例子,这一次是X和Y空间坐标的函数。


Figure 2 -Two examples of trajectories of a two dimensional Wiener process in the plane XY .
图2-在XY平面上二维维纳过程的轨迹的两个例子。

Given N (number of steps), M (number of trajectories) and T (maximum of the time interval),

we generate a matrix W all containing M trajectories of the Brownian motion in one dimension

on the interval [0; T] with a discretization step h = T=N.

给定N(步数),M(轨迹数)和T(时间间隔的最大值),我们生成一个矩阵W,其中包含布朗运动在一维中的M个轨迹,在区间[0;T],离散步长h = T=N。

Figure 3 shows M = 10; 100; 1000 trajectories over the interval [0; 10] with N = 1000 steps.

图3显示M = 10;100;在区间[0;10] N = 1000步。


Figure 3 { M = 10; 100; 1000 (from left to right) trajectories of a one-dimensional Wiener process
over the time interval [0; 10] with N = 1000 discretisation steps.
图3 {M = 10;100;1000个(从左到右)一维维纳过程在时间区间[0;10], N = 1000离散步长。

We simulate M = 1000 trajectories over the interval [0; 10]. Figure 4 shows the mean and

the variance over time of these trajectories.

我们在区间[0;10]。图4显示了这些轨迹随时间的平均值和方差。


Figure 4 { Mean and variance of M = 1000 trajectories of a Brownian motion in one dimension.
图4 {M = 1000条布朗运动轨迹在一维中的均值和方差。

In contrast, figure 5 shows the expectation valuesE[W(t)], E[W(t)2] et E[W(t)4] obtained numerically as a function of time.

与此相反,图5给出了期望值E[W(t)]、E[W(t) 2]和E[W(t) 4]作为时间函数的数值计算结果。

The first moment corresponds exactly to the average.

第一个力矩正好对应于平均值。

In the presence of a zero mean, the variance is equivalent to the moment E[W(t)2].

在均值为零的情况下,方差等于矩E[W(t) 2]。

The red lines in each panel of Figure 5 show that the equalities E[W(t)] = 0, E[W(t)2] = t, and E[W(t)4] = 3t2 are satisfied.

图5中每个面板中的红线表示满足等式E[W(t)] = 0、E[W(t) 2] = t和E[W(t) 4] = 3t 2。

Figure 5 { Expectation values E[W(t)], E[W(t)2] and E[W(t)4] calculated numerically and compared with the curves (in red) expected theoretically.

图5{数值计算的期望值E[W(t)]、E[W(t) 2]、E[W(t) 4]与理论期望曲线(红色)对比。

相关推荐
sheeta199821 小时前
LeetCode 每日一题笔记 日期:2025.11.24 题目:1018. 可被5整除的二进制前缀
笔记·算法·leetcode
LFly_ice21 小时前
学习React-24-路由传参
前端·学习·react.js
陈天伟教授1 天前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
毕设源码-钟学长1 天前
【开题答辩全过程】以 高校课程学习评价系统设计与实现为例,包含答辩的问题和答案
学习
chinesegf1 天前
图文并茂的笔记、便签是如何用py开发的
笔记·状态模式
fruge1 天前
从第三方库中偷师:学习 Lodash 的函数封装技巧
学习
lingggggaaaa1 天前
免杀对抗——C2远控篇&C&C++&DLL注入&过内存核晶&镂空新增&白加黑链&签名程序劫持
c语言·c++·学习·安全·网络安全·免杀对抗
陈天伟教授1 天前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
我先去打把游戏先1 天前
ESP32学习笔记(基于IDF):基于OneNet的ESP32的OTA功能
笔记·物联网·学习·云计算·iphone·aws
初願致夕霞1 天前
学习笔记——基础hash思想及其简单C++实现
笔记·学习·哈希算法