【随机过程】布朗运动

这里写目录标题

  • [Brownian motion](#Brownian motion)

Brownian motion

The brownian motion 1D and brownian motion 2D functions, written with the cumsum command and without for loops, are used to generate a one-dimensional and two-dimensional Brownian motion, respectively.

使用cumsum命令编写的布朗运动1D函数和不带for循环的布朗运动2D函数分别生成一维和二维布朗运动。

These Wiener processes are characterized by normal-centered increments with variance h, where h is the time increment, generated by the command randn(1,n)*sqrt(h).

这些维纳过程的特征是方差为h的正态中心增量,其中h是时间增量,由命令randn(1,n)*sqrt(h)生成。

We consider a time interval T = 1000, divided into n = 1000 increments of value h = 1.

我们考虑一个时间间隔T = 1000,分成n = 1000个值h = 1的增量。

Figure1 shows, for example, two trajectories W(t) of a one-dimensional Wiener process.

例如,图1显示了一维维纳过程的两条轨迹W(t)。

Figure 1 { Two examples of trajectories as a function of the time t of a Wiener process W(t) in one
dimension.
图1{两个关于一维维纳过程W(t)时间t的轨迹函数的例子。

Figure 2,on the other hand, shows two examples of a two-dimensional Brownian motion trajectory, this time as a function of the X and Y spatial coordinates.

另一方面,图2显示了两个二维布朗运动轨迹的例子,这一次是X和Y空间坐标的函数。


Figure 2 -Two examples of trajectories of a two dimensional Wiener process in the plane XY .
图2-在XY平面上二维维纳过程的轨迹的两个例子。

Given N (number of steps), M (number of trajectories) and T (maximum of the time interval),

we generate a matrix W all containing M trajectories of the Brownian motion in one dimension

on the interval [0; T] with a discretization step h = T=N.

给定N(步数),M(轨迹数)和T(时间间隔的最大值),我们生成一个矩阵W,其中包含布朗运动在一维中的M个轨迹,在区间[0;T],离散步长h = T=N。

Figure 3 shows M = 10; 100; 1000 trajectories over the interval [0; 10] with N = 1000 steps.

图3显示M = 10;100;在区间[0;10] N = 1000步。


Figure 3 { M = 10; 100; 1000 (from left to right) trajectories of a one-dimensional Wiener process
over the time interval [0; 10] with N = 1000 discretisation steps.
图3 {M = 10;100;1000个(从左到右)一维维纳过程在时间区间[0;10], N = 1000离散步长。

We simulate M = 1000 trajectories over the interval [0; 10]. Figure 4 shows the mean and

the variance over time of these trajectories.

我们在区间[0;10]。图4显示了这些轨迹随时间的平均值和方差。


Figure 4 { Mean and variance of M = 1000 trajectories of a Brownian motion in one dimension.
图4 {M = 1000条布朗运动轨迹在一维中的均值和方差。

In contrast, figure 5 shows the expectation valuesE[W(t)], E[W(t)2] et E[W(t)4] obtained numerically as a function of time.

与此相反,图5给出了期望值E[W(t)]、E[W(t) 2]和E[W(t) 4]作为时间函数的数值计算结果。

The first moment corresponds exactly to the average.

第一个力矩正好对应于平均值。

In the presence of a zero mean, the variance is equivalent to the moment E[W(t)2].

在均值为零的情况下,方差等于矩E[W(t) 2]。

The red lines in each panel of Figure 5 show that the equalities E[W(t)] = 0, E[W(t)2] = t, and E[W(t)4] = 3t2 are satisfied.

图5中每个面板中的红线表示满足等式E[W(t)] = 0、E[W(t) 2] = t和E[W(t) 4] = 3t 2。

Figure 5 { Expectation values E[W(t)], E[W(t)2] and E[W(t)4] calculated numerically and compared with the curves (in red) expected theoretically.

图5{数值计算的期望值E[W(t)]、E[W(t) 2]、E[W(t) 4]与理论期望曲线(红色)对比。

相关推荐
大筒木老辈子31 分钟前
Linux笔记---协议定制与序列化/反序列化
网络·笔记
草莓熊Lotso39 分钟前
【C++】递归与迭代:两种编程范式的对比与实践
c语言·开发语言·c++·经验分享·笔记·其他
我爱挣钱我也要早睡!4 小时前
Java 复习笔记
java·开发语言·笔记
知识分享小能手6 小时前
React学习教程,从入门到精通, React 属性(Props)语法知识点与案例详解(14)
前端·javascript·vue.js·学习·react.js·vue·react
汇能感知8 小时前
摄像头模块在运动相机中的特殊应用
经验分享·笔记·科技
阿巴Jun9 小时前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
茯苓gao9 小时前
STM32G4 速度环开环,电流环闭环 IF模式建模
笔记·stm32·单片机·嵌入式硬件·学习
是誰萆微了承諾9 小时前
【golang学习笔记 gin 】1.2 redis 的使用
笔记·学习·golang
DKPT10 小时前
Java内存区域与内存溢出
java·开发语言·jvm·笔记·学习
aaaweiaaaaaa10 小时前
HTML和CSS学习
前端·css·学习·html