深度学习:激活函数曲线总结

深度学习:激活函数曲线总结

在深度学习中有很多时候需要利用激活函数进行非线性处理,在搭建网路的时候也是非常重要的,为了更好的理解不同的激活函数的区别和差异,在这里做一个简单的总结,在pytorch中常用的激活函数的数学表达形式,同时为了更直观的感受,给出不同激活函数的曲线形式,方便查询。

复制代码
import torch
import torch.nn as nn
x = torch.linspace(-4, 4, 400) # 在-4和4之间画400个点。

1. nn.leakyReLU()

给负值一个斜率,不全为零。

  • 数学公式:
    LeakyReLU ( x ) = { x , if x ≥ 0 negative_slope × x , otherwise \text{LeakyReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ \text{negative\_slope} \times x, & \text{ otherwise } \end{cases} LeakyReLU(x)={x,negative_slope×x, if x≥0 otherwise

    leakyrelu = nn.LeakyReLU(negative_slope=0.01)

negative_slope 是一个小于1的值,通常设置为0.01,用于控制在输入小于0时的输出斜率。这意味着在nn.LeakyReLU中,负数输入会乘以negative_slope,而正数输入保持不变。

  • 对应曲线:

2. nn.Relu()

ReLU是一个常用的激活函数,它将负数值设为0,保持正数值不变。

  • 数学公式:
    ReLU ( x ) = ( x ) + = max ⁡ ( 0 , x ) \text{ReLU}(x) = (x)^+ = \max(0, x) ReLU(x)=(x)+=max(0,x)

    relu = nn.ReLU()

  • 函数曲线:

3. nn.Tanh()

Tanh函数将输入映射到-1和1之间

  • 数学公式
    Tanh ( x ) = tanh ⁡ ( x ) = exp ⁡ ( x ) − exp ⁡ ( − x ) exp ⁡ ( x ) + exp ⁡ ( − x ) \text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)} Tanh(x)=tanh(x)=exp(x)+exp(−x)exp(x)−exp(−x)

    Tanh = nn.Tanh()

  • 函数曲线

4. nn.PReLU()

PReLU是具有可学习参数的激活函数,用于克服ReLU的一些问题

  • 数学公式
    RReLU ( x ) = { x if x ≥ 0 a x otherwise \text{RReLU}(x) = \begin{cases} x & \text{if } x \geq 0 \\ ax & \text{ otherwise } \end{cases} RReLU(x)={xaxif x≥0 otherwise

    PReLU = nn.PReLU(num_parameters=1)

  • 函数曲线

5. nn.ELU()

所有点上都是连续的和可微的,训练快

  • 数学公式:
    ELU ( x ) = { x , if x > 0 α ∗ ( exp ⁡ ( x ) − 1 ) , if x ≤ 0 \text{ELU}(x) = \begin{cases} x, & \text{ if } x > 0\\ \alpha * (\exp(x) - 1), & \text{ if } x \leq 0 \end{cases} ELU(x)={x,α∗(exp(x)−1), if x>0 if x≤0

    ELU = nn.ELU()

  • 函数曲线

6. nn.SELU()

  • 数学公式:
    SELU ( x ) = scale ∗ ( max ⁡ ( 0 , x ) + min ⁡ ( 0 , α ∗ ( exp ⁡ ( x ) − 1 ) ) ) \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) SELU(x)=scale∗(max(0,x)+min(0,α∗(exp(x)−1)))

    SELU = nn.SELU()

  • 函数曲线:

7. nn.GELU()

  • 数学公式:
    GELU ( x ) = x ∗ Φ ( x ) \text{GELU}(x) = x * \Phi(x) GELU(x)=x∗Φ(x)

    GELU = nn.GELU()

  • 函数曲线:

8. nn.Mish()

  • 数学公式:
    Mish ( x ) = x ∗ Tanh ( Softplus ( x ) ) \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x)) Mish(x)=x∗Tanh(Softplus(x))

    Mish = nn.Mish()

  • 函数曲线:

9 . nn.Softmax()

  • 数学公式:
    Softmax ( x i ) = exp ⁡ ( x i ) ∑ j exp ⁡ ( x j ) \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} Softmax(xi)=∑jexp(xj)exp(xi)

    Softmax = nn.Softmax()
    y = Softmax(x)

  • 函数曲线:

总结

感觉还是看曲线的形状,把大体的形状记住更直观些。

相关推荐
Json_9 分钟前
实例入门 实例属性
前端·深度学习
Json_9 分钟前
JS中的apply和arguments小练习
前端·javascript·深度学习
攻城狮7号27 分钟前
【第一节】Python爬虫基础-HTTP基本原理
爬虫·python·python爬虫
Json_27 分钟前
Vue Methods Option 方法选项
前端·vue.js·深度学习
IT乐手28 分钟前
adb logcat 写文件乱码的解决方案
android·python
Python测试之道32 分钟前
Deepseek API+Python 测试用例一键生成与导出 V1.0.6(加入分块策略,返回更完整可靠)
开发语言·python·测试用例
SRC_BLUE_1735 分钟前
Python GUI 编程 | QObject 控件基类详解 — 定时器
开发语言·数据库·python
啊阿狸不会拉杆43 分钟前
第二十一章:Python-Plotly库实现数据动态可视化
开发语言·python·plotly
月走乂山1 小时前
nocobase + Python爬虫实现数据可视化
爬虫·python·低代码·信息可视化
滴答滴答嗒嗒滴1 小时前
Python小练习系列 Vol.12:学生信息排序(sorted + key函数)
开发语言·python