评价聚类的方法

inertias:inertias是K均值模型对象的属性,表示样本距离最近的聚类中心的总和,它是作为在没有真实分类结果标签下的非监督式评估指标。该值越小越好,值越小证明样本在类间的分布越集中,即类内的距离越小。

adjusted_rand_s:调整后的兰德指数(Adjusted Rand Index),兰德指数通过考虑在预测和真实聚类中在相同或不同聚类中分配的所有样本对和计数对来计算两个聚类之间的相似性度量。调整后的兰德指数通过对兰德指数的调整得到独立于样本量和类别的接近于0的值,其取值范围为[-1, 1],负数代表结果不好,越接近于1越好意味着聚类结果与真实情况越吻合。

mutual_info_s:互信息(Mutual Information, MI),互信息是一个随机变量中包含的关于另一个随机变量的信息量,在这里指的是相同数据的两个标签之间的相似度的量度,结果是非负值。

adjusted_mutual_info_s:调整后的互信息(Adjusted Mutual Information, AMI),调整后的互信息是对互信息评分的调整得分。它考虑到对于具有更大数量的聚类群,通常MI较高,而不管实际上是否有更多的信息共享,它通过调整聚类群的概率来纠正这种影响。当两个聚类集相同(即完全匹配)时,AMI返回值为1;随机分区(独立标签)平均预期AMI约为0,也可能为负数。

homogeneity_s:同质化得分(Homogeneity),如果所有的聚类都只包含属于单个类的成员的数据点,则聚类结果将满足同质性。其取值范围[0,1]值越大意味着聚类结果与真实情况越吻合。

completeness_s:完整性得分(Completeness),如果作为给定类的成员的所有数据点是相同集群的元素,则聚类结果满足完整性。其取值范围[0,1],值越大意味着聚类结果与真实情况越吻合。

v_measure_s:它是同质化和完整性之间的谐波平均值,v = 2 (均匀性完整性)/(均匀性+完整性)。其取值范围[0,1],值越大意味着聚类结果与真实情况越吻合。

silhouette_s:轮廓系数(Silhouette),它用来计算所有样本的平均轮廓系数,使用平均群内距离和每个样本的平均最近簇距离来计算,它是一种非监督式评估指标。其最高值为1,最差值为-1,0附近的值表示重叠的聚类,负值通常表示样本已被分配到错误的集群。

calinski_harabaz_s:该分数定义为群内离散与簇间离散的比值,它是一种非监督式评估指标。

相关推荐
B站_计算机毕业设计之家6 分钟前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法
渣渣苏14 分钟前
Langchain实战快速入门
人工智能·python·langchain
3GPP仿真实验室16 分钟前
【Matlab源码】6G候选波形:OFDM-IM 增强仿真平台 DM、CI
开发语言·matlab·ci/cd
devmoon20 分钟前
在 Polkadot 上部署独立区块链Paseo 测试网实战部署指南
开发语言·安全·区块链·polkadot·erc-20·测试网·独立链
lili-felicity20 分钟前
CANN流水线并行推理与资源调度优化
开发语言·人工智能
沐知全栈开发21 分钟前
CSS3 边框:全面解析与实战技巧
开发语言
lili-felicity23 分钟前
CANN模型量化详解:从FP32到INT8的精度与性能平衡
人工智能·python
数据知道26 分钟前
PostgreSQL实战:详解如何用Python优雅地从PG中存取处理JSON
python·postgresql·json
island131431 分钟前
CANN GE(图引擎)深度解析:计算图优化管线、内存静态规划与异构 Stream 调度机制
c语言·开发语言·神经网络
曹牧35 分钟前
Spring Boot:如何在Java Controller中处理POST请求?
java·开发语言