ESM蛋白质语言模型系列

模型总览

  • 第一篇《Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences 》ESM-1b

  • 第二篇《MSA Transformer》在ESM-1b的基础上作出改进,将模型的输入从单一蛋白质序列改为MSA矩阵,并在Transformer中加入行、列两种轴向注意力机制,对位点分别计算第个序列和第个对齐位置的影响,充分利用二维输入的优势。

  • 第三篇《Language models enable zero-shot prediction of the effects of mutations on protein function 》中提出了ESM-1v模型,该模型与ESM-1b模型构架相同,只是预训练数据集改为UR90(ESM-1b预训练数据集为UR50)

  • 第四篇《Language models of protein sequences at the scale of evolution enable accurate structure prediction》,ESMFold,提出了ESM2,代替MSA部分和Structure Template部分,对Postion Embedding做了修改,可以支持更长的氨基酸序列编码

模型名称 input 普适性 模型 论文
ESM-1b single sequence family-specific transformer encoder Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences
ESM-MSA-1b MSA few-shot 加了两个行列注意力机制 MSA Transformer
ESM-1v single sequence zero-shot transformer encoder Language models enable zero-shot prediction of the effects of mutations on protein function
ESM-2 single sequence zero-shot transformer encoder Language models of protein sequences at the scale of evolution enable accurate structure prediction

ESM-1B的模型大小如下所示

ESM2模型大小如下所示(esm-github截图):

ESM-2 embedding(不同于word2vec,和BERT一样?):

Bert输入Embeddings包含三个部分,第一部分为token的embeddings,第二部分为位置编码的embeddings,第三部分为token所属段落编码的embeddings

  • tokenizer(由wordpiece创建)对输入蛋白会头尾添加cls、eos特殊字符,占两个字符长度 ,加Padding Token [PAD]
  • tokenizer会创建固定大小的词汇表,进行分词,查词汇表将token转化成索引列表

tokenizer首先检查整个单词是否在词汇表中。如果没有,则尝试将单词分解为词汇表中包含的尽可能大的子单词,最后将单词分解为单个字符。注意,由于这个原因,我们总是可以将一个单词表示为至少是它的单个字符的集合

self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0),相同位置输出相同

将这3个ID序列输入到BERT中就会按照BERT模型的定义依次将各种ID转换为对应的embedding

Token Embeddings, (1, n, 768) ,词的向量表示

Segment Embeddings, (1, n, 768),辅助BERT区别句子对中的两个句子的向量表示,EMS2将蛋白质视为几个句子?

Position Embeddings ,(1, n, 768) ,让BERT学习到输入的顺序属性

  • 分词后送入token embedding层从而将每一个词转换成向量形式

ESM-2 output:

和BERT一样

相关推荐
安全二次方security²12 小时前
CUDA C++编程指南(7.25)——C++语言扩展之DPX
c++·人工智能·nvidia·cuda·dpx·cuda c++编程指南
童话名剑16 小时前
训练词嵌入(吴恩达深度学习笔记)
人工智能·深度学习·word2vec·词嵌入·负采样·嵌入矩阵·glove算法
桂花很香,旭很美17 小时前
智能体技术架构:从分类、选型到落地
人工智能·架构
HelloWorld__来都来了17 小时前
2026.1.30 本周学术科研热点TOP5
人工智能·科研
aihuangwu18 小时前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
YMWM_18 小时前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐18 小时前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
九尾狐ai19 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_9481201519 小时前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
(; ̄ェ ̄)。19 小时前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习