力扣42.接雨水(java,暴力法、前缀和解法)

Problem: 42. 接雨水

文章目录

思路

要能接住雨水,感性的认知就是要形成一个"下凹区域",则此时我们就要比较当前柱子和其左右柱子高度的关系,易得一个关键的式子:当前小区域的积水 = min(当前柱子左侧最高柱子高度,当前柱子右侧最高柱子高度) - 当前柱子高度 ;但我们也应当注意按上式得出的结果当前小区域的积水可能为负值 ,因为当前柱子的高度可能大于min(当前柱子左侧最高柱子高度,当前柱子右侧最高柱子高度),实际情况也就是无法形成一个接住水的区域,则我们将其设置为0。

解题方法

1.暴力法:一遍遍历,每次寻找当前柱子左、右侧的最高柱子,再将min(当前柱子左侧最高柱子高度,当前柱子右侧最高柱子高度) - 当前柱子高度 加到结果上(注意 若其结果为正则直接加,为负置为0)

2.前缀和:先通过遍历每次记录当前柱子及其左侧的最高值当前柱子及其右侧柱子的最高值 ,再将min(当前柱子及其左侧的最高值,当前柱子及其右侧柱子的最高值)-当前柱子的高度值 加到结果上(注意 此时由于在记录当前柱子及其左侧的最高值当前柱子及其右侧柱子的最高值 的操作中已经记录了当前柱子的高度值,则最后再不用判断每次要加到结果上的值是否小于0)

复杂度

  • 时间复杂度:

暴力法: O ( n 2 ) O(n^2) O(n2)

前缀和: O ( n ) O(n) O(n)

  • 空间复杂度:

暴力法: O ( 1 ) O(1) O(1)

前缀和: O ( n ) O(n) O(n)

Code

java 复制代码
class Solution {
    //暴力法
    //Time Complexity: O(N^2)
    //Space Complexity: O()
    public int trap(int[] height) {
        int res = 0;
        //从第2()个柱子开始到倒数第二个
        for (int i = 1; i < height.length - 1; ++i) {
            //寻找当前左侧最高柱子
            int leftMax = 0;
            for (int j = 0; j < i; ++j) {
                if (height[j] > leftMax) {
                    leftMax = height[j];
                }
            }

            //寻找当前右侧最高柱子
            int rightMax = 0;
            for (int j = i + 1; j < height.length; ++j) {
                if (height[j] > rightMax) {
                    rightMax = height[j];
                }
            }
            //当前柱子两侧最高柱子的较低值
            //减去当前柱子的长度即为当前储水量
            //如果carry小于0,则为0
            int carry = Math.min(rightMax,leftMax) - height[i];
            if (carry < 0) carry = 0;
            res += carry;
        }
        return res;
    }
}
java 复制代码
class Solution {
    //前缀数组
    //Time Complexity: O(N)
    //Space Complexity: O(N)
    public int trap(int[] height) {
        int n = height.length;
        //前缀max
        int[] leftMax = new int[n];
        int max = 0;
        for (int i = 0; i < n; ++i) {
            //寻找当前左边(包括本身)的最大值
            leftMax[i] = Math.max(max,height[i]);
            max = leftMax[i];
        }

        //后缀max
        int[] rightMax = new int[n];
        max = 0;
        for (int i = n - 1; i >= 0; --i) {
            //寻找当前右边边(包括本身)的最大值
            rightMax[i] = Math.max(max,height[i]);
            max = rightMax[i];
        }
        //计算柱子之上接到的雨水
        int res = 0;
        for (int i = 1; i < n - 1; ++i) {
            res += Math.min(leftMax[i], rightMax[i]) - height[i];
        }
        return res;
    }
}
相关推荐
cynicme2 小时前
力扣3318——计算子数组的 x-sum I(偷懒版)
java·算法·leetcode
青云交3 小时前
Java 大视界 -- Java 大数据在智能教育学习效果评估与教学质量改进实战
java·实时分析·生成式 ai·个性化教学·智能教育·学习效果评估·教学质量改进
崎岖Qiu3 小时前
【设计模式笔记17】:单例模式1-模式分析
java·笔记·单例模式·设计模式
Lei活在当下3 小时前
【现代 Android APP 架构】09. 聊一聊依赖注入在 Android 开发中的应用
java·架构·android jetpack
不穿格子的程序员4 小时前
从零开始刷算法-栈-括号匹配
java·开发语言·
lkbhua莱克瓦244 小时前
Java练习-正则表达式 1
java·笔记·正则表达式·github
yue0084 小时前
C#类继承
java·开发语言·c#
im_AMBER5 小时前
算法笔记 09
c语言·数据结构·c++·笔记·学习·算法·排序算法
凯芸呢5 小时前
Java中的数组(续)
java·开发语言·数据结构·算法·青少年编程·排序算法·idea
竹竹零5 小时前
JacksonUtil--序列化与反序列化
java·开发语言·windows