力扣42.接雨水(java,暴力法、前缀和解法)

Problem: 42. 接雨水

文章目录

思路

要能接住雨水,感性的认知就是要形成一个"下凹区域",则此时我们就要比较当前柱子和其左右柱子高度的关系,易得一个关键的式子:当前小区域的积水 = min(当前柱子左侧最高柱子高度,当前柱子右侧最高柱子高度) - 当前柱子高度 ;但我们也应当注意按上式得出的结果当前小区域的积水可能为负值 ,因为当前柱子的高度可能大于min(当前柱子左侧最高柱子高度,当前柱子右侧最高柱子高度),实际情况也就是无法形成一个接住水的区域,则我们将其设置为0。

解题方法

1.暴力法:一遍遍历,每次寻找当前柱子左、右侧的最高柱子,再将min(当前柱子左侧最高柱子高度,当前柱子右侧最高柱子高度) - 当前柱子高度 加到结果上(注意 若其结果为正则直接加,为负置为0)

2.前缀和:先通过遍历每次记录当前柱子及其左侧的最高值当前柱子及其右侧柱子的最高值 ,再将min(当前柱子及其左侧的最高值,当前柱子及其右侧柱子的最高值)-当前柱子的高度值 加到结果上(注意 此时由于在记录当前柱子及其左侧的最高值当前柱子及其右侧柱子的最高值 的操作中已经记录了当前柱子的高度值,则最后再不用判断每次要加到结果上的值是否小于0)

复杂度

  • 时间复杂度:

暴力法: O ( n 2 ) O(n^2) O(n2)

前缀和: O ( n ) O(n) O(n)

  • 空间复杂度:

暴力法: O ( 1 ) O(1) O(1)

前缀和: O ( n ) O(n) O(n)

Code

java 复制代码
class Solution {
    //暴力法
    //Time Complexity: O(N^2)
    //Space Complexity: O()
    public int trap(int[] height) {
        int res = 0;
        //从第2()个柱子开始到倒数第二个
        for (int i = 1; i < height.length - 1; ++i) {
            //寻找当前左侧最高柱子
            int leftMax = 0;
            for (int j = 0; j < i; ++j) {
                if (height[j] > leftMax) {
                    leftMax = height[j];
                }
            }

            //寻找当前右侧最高柱子
            int rightMax = 0;
            for (int j = i + 1; j < height.length; ++j) {
                if (height[j] > rightMax) {
                    rightMax = height[j];
                }
            }
            //当前柱子两侧最高柱子的较低值
            //减去当前柱子的长度即为当前储水量
            //如果carry小于0,则为0
            int carry = Math.min(rightMax,leftMax) - height[i];
            if (carry < 0) carry = 0;
            res += carry;
        }
        return res;
    }
}
java 复制代码
class Solution {
    //前缀数组
    //Time Complexity: O(N)
    //Space Complexity: O(N)
    public int trap(int[] height) {
        int n = height.length;
        //前缀max
        int[] leftMax = new int[n];
        int max = 0;
        for (int i = 0; i < n; ++i) {
            //寻找当前左边(包括本身)的最大值
            leftMax[i] = Math.max(max,height[i]);
            max = leftMax[i];
        }

        //后缀max
        int[] rightMax = new int[n];
        max = 0;
        for (int i = n - 1; i >= 0; --i) {
            //寻找当前右边边(包括本身)的最大值
            rightMax[i] = Math.max(max,height[i]);
            max = rightMax[i];
        }
        //计算柱子之上接到的雨水
        int res = 0;
        for (int i = 1; i < n - 1; ++i) {
            res += Math.min(leftMax[i], rightMax[i]) - height[i];
        }
        return res;
    }
}
相关推荐
带刺的坐椅9 分钟前
轻量级流程编排框架,Solon Flow v3.5.0 发布
java·solon·workflow·flow·solon-flow
你知道网上冲浪吗12 分钟前
【原创理论】Stochastic Coupled Dyadic System (SCDS):一个用于两性关系动力学建模的随机耦合系统框架
python·算法·数学建模·数值分析
David爱编程30 分钟前
线程调度策略详解:时间片轮转 vs 优先级机制,面试常考!
java·后端
阿冲Runner1 小时前
创建一个生产可用的线程池
java·后端
写bug写bug1 小时前
你真的会用枚举吗
java·后端·设计模式
地平线开发者2 小时前
征程 6 | PTQ 精度调优辅助代码,总有你用得上的
算法·自动驾驶
Tisfy2 小时前
LeetCode 837.新 21 点:动态规划+滑动窗口
数学·算法·leetcode·动态规划·dp·滑动窗口·概率
喵手2 小时前
如何利用Java的Stream API提高代码的简洁度和效率?
java·后端·java ee
-Xie-2 小时前
Maven(二)
java·开发语言·maven
IT利刃出鞘2 小时前
Java线程的6种状态和JVM状态打印
java·开发语言·jvm