大数据开发(19)-hash table详解

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


在Map-side聚合中,每个Map任务(mapper)都会维护一个独立的哈希表(hash table)。

在MapReduce框架中,每个Map任务都是独立的,它们分别处理输入数据集的不同部分。每个Map任务都会创建一个哈希表,用于存储键值对(key-value pairs)并进行聚合操作。这个哈希表是在内存中维护的,它的最大大小取决于Map任务的堆内存大小。

当哈希表的大小超过一定比例时,会触发一次flush操作。这个比例通常是由系统配置的阈值决定的,可以根据需要进行调整。在flush操作中,哈希表中的数据会被写入到磁盘或其他外部存储设备中,以便释放内存空间。

需要注意的是,由于每个Map任务都有自己的哈希表,因此Map任务的堆内存大小对于整个MapReduce作业的性能和资源消耗有很大的影响。如果堆内存不足,可能会导致任务失败或数据丢失等问题。因此,在配置Map任务的堆内存时需要谨慎考虑,确保足够的内存资源来处理数据和维持哈希表的操作。

相关推荐
是做服装的同学6 小时前
服装软件ERP系统的基本概念是什么?主要构成有哪些?
大数据·经验分享·其他
heimeiyingwang7 小时前
企业供应链 AI 优化:需求预测与智能调度
大数据·数据库·人工智能·机器学习
Dr.AE12 小时前
AI+教育行业分析报告
大数据·人工智能·教育电商
Evaporator Core13 小时前
通信专业技术资格考试备战系列(一):通信基础知识核心要点解析
大数据·tornado
freepopo14 小时前
比较好的别墅装修策略
大数据
实战产品说18 小时前
2026出海产品的机会与挑战
大数据·人工智能·产品运营·产品经理
2501_9269783318 小时前
从Prompt的“结构-参数”到多AI的“协作-分工”--底层逻辑的同构分化
大数据·人工智能·机器学习
教男朋友学大模型19 小时前
平衡AI自动化与人工干预
大数据·人工智能·自动化
渣瓦攻城狮19 小时前
互联网大厂Java面试实战:核心技术与场景分析
java·大数据·redis·spring·微服务·面试·技术分享
Elastic 中国社区官方博客20 小时前
Elasticsearch:通过最小分数确保语义精度
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索