大数据开发(19)-hash table详解

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


在Map-side聚合中,每个Map任务(mapper)都会维护一个独立的哈希表(hash table)。

在MapReduce框架中,每个Map任务都是独立的,它们分别处理输入数据集的不同部分。每个Map任务都会创建一个哈希表,用于存储键值对(key-value pairs)并进行聚合操作。这个哈希表是在内存中维护的,它的最大大小取决于Map任务的堆内存大小。

当哈希表的大小超过一定比例时,会触发一次flush操作。这个比例通常是由系统配置的阈值决定的,可以根据需要进行调整。在flush操作中,哈希表中的数据会被写入到磁盘或其他外部存储设备中,以便释放内存空间。

需要注意的是,由于每个Map任务都有自己的哈希表,因此Map任务的堆内存大小对于整个MapReduce作业的性能和资源消耗有很大的影响。如果堆内存不足,可能会导致任务失败或数据丢失等问题。因此,在配置Map任务的堆内存时需要谨慎考虑,确保足够的内存资源来处理数据和维持哈希表的操作。

相关推荐
一周困⁸天.11 分钟前
Elasticsearch+Logstash+Filebeat+Kibana部署【7.1.1版本】
大数据·elk·elasticsearch·jenkins
档案宝档案管理20 分钟前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
小湘西1 小时前
在 Hive 中NULL的理解
数据仓库·hive·hadoop
workflower2 小时前
FDD(Feature Driven Development)特征驱动开发
大数据·数据库·驱动开发·需求分析·个人开发
YangYang9YangYan5 小时前
高职新能源汽车技术专业职业发展指南
大数据·人工智能·数据分析·汽车
河南博为智能科技有限公司5 小时前
RS485转以太网串口服务器-串口设备联网的理想选择
大数据·服务器·人工智能·单片机·嵌入式硬件·物联网
Hello.Reader6 小时前
Spark RDD 编程从驱动程序到共享变量、Shuffle 与持久化
大数据·分布式·spark
VXHAruanjian8886 小时前
以智促效,释放创新力量,RPA助力企业全面自动化变革
大数据·人工智能
哦你看看7 小时前
Elasticsearch+Logstash+Filebeat+Kibana部署[7.17.3版本]
大数据·elasticsearch·搜索引擎
小鹿学程序9 小时前
搭建hadoop集群
大数据·hadoop·分布式