大数据开发(19)-hash table详解

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


在Map-side聚合中,每个Map任务(mapper)都会维护一个独立的哈希表(hash table)。

在MapReduce框架中,每个Map任务都是独立的,它们分别处理输入数据集的不同部分。每个Map任务都会创建一个哈希表,用于存储键值对(key-value pairs)并进行聚合操作。这个哈希表是在内存中维护的,它的最大大小取决于Map任务的堆内存大小。

当哈希表的大小超过一定比例时,会触发一次flush操作。这个比例通常是由系统配置的阈值决定的,可以根据需要进行调整。在flush操作中,哈希表中的数据会被写入到磁盘或其他外部存储设备中,以便释放内存空间。

需要注意的是,由于每个Map任务都有自己的哈希表,因此Map任务的堆内存大小对于整个MapReduce作业的性能和资源消耗有很大的影响。如果堆内存不足,可能会导致任务失败或数据丢失等问题。因此,在配置Map任务的堆内存时需要谨慎考虑,确保足够的内存资源来处理数据和维持哈希表的操作。

相关推荐
GIS数据转换器8 小时前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
hg01188 小时前
今年前10个月天津进出口总值6940.2亿元
大数据
byte轻骑兵10 小时前
时序数据库选型指南:从大数据视角看IoTDB的核心优势
大数据·时序数据库·iotdb
Leo.yuan10 小时前
制造业都在说BOM,为什么BOM这么重要?
大数据·bom·企业数字化·数字赋能
能鈺CMS10 小时前
内容付费系统全面解析:构建知识变现体系的最强工具(2025 SEO 深度专题)
大数据·人工智能·html
原神启动113 小时前
云计算大数据——Nginx 实战系列(性能优化与防盗链配置)
大数据·nginx·云计算
周全全14 小时前
基于ElasticSearch的语义检索学习-向量化数据、向量化相似度、向量化检索
大数据·学习·elasticsearch
可涵不会debug14 小时前
时序数据库选型指南:大数据时代下Apache IoTDB的崛起之路
大数据·apache·时序数据库
WLJT12312312315 小时前
藏在细节里的生活答案
大数据·生活
TDengine (老段)16 小时前
TDengine 日期函数 DATE 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据