大数据开发(19)-hash table详解

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


在Map-side聚合中,每个Map任务(mapper)都会维护一个独立的哈希表(hash table)。

在MapReduce框架中,每个Map任务都是独立的,它们分别处理输入数据集的不同部分。每个Map任务都会创建一个哈希表,用于存储键值对(key-value pairs)并进行聚合操作。这个哈希表是在内存中维护的,它的最大大小取决于Map任务的堆内存大小。

当哈希表的大小超过一定比例时,会触发一次flush操作。这个比例通常是由系统配置的阈值决定的,可以根据需要进行调整。在flush操作中,哈希表中的数据会被写入到磁盘或其他外部存储设备中,以便释放内存空间。

需要注意的是,由于每个Map任务都有自己的哈希表,因此Map任务的堆内存大小对于整个MapReduce作业的性能和资源消耗有很大的影响。如果堆内存不足,可能会导致任务失败或数据丢失等问题。因此,在配置Map任务的堆内存时需要谨慎考虑,确保足够的内存资源来处理数据和维持哈希表的操作。

相关推荐
说私域18 分钟前
短视频私域流量池的变现路径创新:基于AI智能名片链动2+1模式S2B2C商城小程序的实践研究
大数据·人工智能·小程序
MM_MS30 分钟前
Halcon图像锐化和图像增强、窗口的相关算子
大数据·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
焦耳热科技前沿1 小时前
中科大EMA:3秒焦耳热一步合成双功能催化剂用于甲醇氧化协同高效制氢
大数据·人工智能·自动化·能源·材料工程
向量引擎小橙1 小时前
推理革命与能耗:AI大模型应用落地的“冰山成本”与破局之路
大数据·人工智能·深度学习·集成学习
一条咸鱼_SaltyFish2 小时前
[Day15] 若依框架二次开发改造记录:定制化之旅 contract-security-ruoyi
java·大数据·经验分享·分布式·微服务·架构·ai编程
TMT星球3 小时前
星动纪元携人形机器人家族亮相CES 2026,海外业务占比达50%
大数据·人工智能·机器人
chen<>3 小时前
Git原理与应用
大数据·git·elasticsearch·svn
焦耳热科技前沿3 小时前
西华大学Adv. Sci.:超高温焦耳热冲击制备拓扑缺陷碳,用于催化碳纳米管可控生长
大数据·人工智能·能源·材料工程·电池
故乡de云4 小时前
Google Cloud与AWS大数据AI服务对比:2026年企业选型指南
大数据·人工智能·aws
米粒14 小时前
操作系统原理--处理机调度
大数据